cheng-hust's picture
Upload 91 files
e8861c0 verified
raw
history blame
4.72 kB
"""
reference
- https://github.com/pytorch/vision/blob/main/references/detection/utils.py
- https://github.com/facebookresearch/detr/blob/master/util/misc.py#L406
by lyuwenyu
"""
import random
import numpy as np
import torch
import torch.nn as nn
import torch.distributed
import torch.distributed as tdist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DistributedSampler
from torch.utils.data.dataloader import DataLoader
def init_distributed():
'''
distributed setup
args:
backend (str), ('nccl', 'gloo')
'''
try:
# # https://pytorch.org/docs/stable/elastic/run.html
# LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))
# RANK = int(os.getenv('RANK', -1))
# WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
tdist.init_process_group(init_method='env://', )
torch.distributed.barrier()
rank = get_rank()
device = torch.device(f'cuda:{rank}')
torch.cuda.set_device(device)
setup_print(rank == 0)
print('Initialized distributed mode...')
return True
except:
print('Not init distributed mode.')
return False
def setup_print(is_main):
'''This function disables printing when not in master process
'''
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_main or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def is_dist_available_and_initialized():
if not tdist.is_available():
return False
if not tdist.is_initialized():
return False
return True
def get_rank():
if not is_dist_available_and_initialized():
return 0
return tdist.get_rank()
def get_world_size():
if not is_dist_available_and_initialized():
return 1
return tdist.get_world_size()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def warp_model(model, find_unused_parameters=False, sync_bn=False,):
if is_dist_available_and_initialized():
rank = get_rank()
model = nn.SyncBatchNorm.convert_sync_batchnorm(model) if sync_bn else model
model = DDP(model, device_ids=[rank], output_device=rank, find_unused_parameters=find_unused_parameters)
return model
def warp_loader(loader, shuffle=False):
if is_dist_available_and_initialized():
sampler = DistributedSampler(loader.dataset, shuffle=shuffle)
loader = DataLoader(loader.dataset,
loader.batch_size,
sampler=sampler,
drop_last=loader.drop_last,
collate_fn=loader.collate_fn,
pin_memory=loader.pin_memory,
num_workers=loader.num_workers, )
return loader
def is_parallel(model) -> bool:
# Returns True if model is of type DP or DDP
return type(model) in (torch.nn.parallel.DataParallel, torch.nn.parallel.DistributedDataParallel)
def de_parallel(model) -> nn.Module:
# De-parallelize a model: returns single-GPU model if model is of type DP or DDP
return model.module if is_parallel(model) else model
def reduce_dict(data, avg=True):
'''
Args
data dict: input, {k: v, ...}
avg bool: true
'''
world_size = get_world_size()
if world_size < 2:
return data
with torch.no_grad():
keys, values = [], []
for k in sorted(data.keys()):
keys.append(k)
values.append(data[k])
values = torch.stack(values, dim=0)
tdist.all_reduce(values)
if avg is True:
values /= world_size
_data = {k: v for k, v in zip(keys, values)}
return _data
def all_gather(data):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors)
Args:
data: any picklable object
Returns:
list[data]: list of data gathered from each rank
"""
world_size = get_world_size()
if world_size == 1:
return [data]
data_list = [None] * world_size
tdist.all_gather_object(data_list, data)
return data_list
import time
def sync_time():
'''sync_time
'''
if torch.cuda.is_available():
torch.cuda.synchronize()
return time.time()
def set_seed(seed):
# fix the seed for reproducibility
seed = seed + get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)