File size: 5,707 Bytes
e8861c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
"""by lyuwenyu
"""

import torch 
import torch.nn as nn 

from datetime import datetime
from pathlib import Path 
from typing import Dict

from src.misc import dist
from src.core import BaseConfig


class BaseSolver(object):
    def __init__(self, cfg: BaseConfig) -> None:
        
        self.cfg = cfg 

    def setup(self, ):
        '''Avoid instantiating unnecessary classes 
        '''
        cfg = self.cfg
        device = cfg.device
        self.device = device
        self.last_epoch = cfg.last_epoch

        self.model = dist.warp_model(cfg.model.to(device), cfg.find_unused_parameters, cfg.sync_bn)
        self.criterion = cfg.criterion.to(device)
        self.postprocessor = cfg.postprocessor

        # NOTE (lvwenyu): should load_tuning_state before ema instance building
        if self.cfg.tuning:
            print(f'Tuning checkpoint from {self.cfg.tuning}')
            self.load_tuning_state(self.cfg.tuning)

        self.scaler = cfg.scaler
        self.ema = cfg.ema.to(device) if cfg.ema is not None else None 

        self.output_dir = Path(cfg.output_dir)
        self.output_dir.mkdir(parents=True, exist_ok=True)


    def train(self, ):
        self.setup()
        self.optimizer = self.cfg.optimizer
        self.lr_scheduler = self.cfg.lr_scheduler

        # NOTE instantiating order
        if self.cfg.resume:
            print(f'Resume checkpoint from {self.cfg.resume}')
            self.resume(self.cfg.resume)

        self.train_dataloader = dist.warp_loader(self.cfg.train_dataloader, \
            shuffle=self.cfg.train_dataloader.shuffle)
        self.val_dataloader = dist.warp_loader(self.cfg.val_dataloader, \
            shuffle=self.cfg.val_dataloader.shuffle)


    def eval(self, ):
        self.setup()
        self.val_dataloader = dist.warp_loader(self.cfg.val_dataloader, \
            shuffle=self.cfg.val_dataloader.shuffle)

        if self.cfg.resume:
            print(f'resume from {self.cfg.resume}')
            self.resume(self.cfg.resume)


    def state_dict(self, last_epoch):
        '''state dict
        '''
        state = {}
        state['model'] = dist.de_parallel(self.model).state_dict()
        state['date'] = datetime.now().isoformat()

        # TODO
        state['last_epoch'] = last_epoch

        if self.optimizer is not None:
            state['optimizer'] = self.optimizer.state_dict()

        if self.lr_scheduler is not None:
            state['lr_scheduler'] = self.lr_scheduler.state_dict()
            # state['last_epoch'] = self.lr_scheduler.last_epoch

        if self.ema is not None:
            state['ema'] = self.ema.state_dict()

        if self.scaler is not None:
            state['scaler'] = self.scaler.state_dict()

        return state


    def load_state_dict(self, state):
        '''load state dict
        '''
        # TODO
        if getattr(self, 'last_epoch', None) and 'last_epoch' in state:
            self.last_epoch = state['last_epoch']
            print('Loading last_epoch')

        if getattr(self, 'model', None) and 'model' in state:
            if dist.is_parallel(self.model):
                self.model.module.load_state_dict(state['model'])
            else:
                self.model.load_state_dict(state['model'])
            print('Loading model.state_dict')

        if getattr(self, 'ema', None) and 'ema' in state:
            self.ema.load_state_dict(state['ema'])
            print('Loading ema.state_dict')

        if getattr(self, 'optimizer', None) and 'optimizer' in state:
            self.optimizer.load_state_dict(state['optimizer'])
            print('Loading optimizer.state_dict')

        if getattr(self, 'lr_scheduler', None) and 'lr_scheduler' in state:
            self.lr_scheduler.load_state_dict(state['lr_scheduler'])
            print('Loading lr_scheduler.state_dict')

        if getattr(self, 'scaler', None) and 'scaler' in state:
            self.scaler.load_state_dict(state['scaler'])
            print('Loading scaler.state_dict')


    def save(self, path):
        '''save state
        '''
        state = self.state_dict()
        dist.save_on_master(state, path)


    def resume(self, path):
        '''load resume
        '''
        # for cuda:0 memory
        state = torch.load(path, map_location='cpu')
        self.load_state_dict(state)

    def load_tuning_state(self, path,):
        """only load model for tuning and skip missed/dismatched keys
        """
        if 'http' in path:
            state = torch.hub.load_state_dict_from_url(path, map_location='cpu')
        else:
            state = torch.load(path, map_location='cpu')

        module = dist.de_parallel(self.model)
        
        # TODO hard code
        if 'ema' in state:
            stat, infos = self._matched_state(module.state_dict(), state['ema']['module'])
        else:
            stat, infos = self._matched_state(module.state_dict(), state['model'])

        module.load_state_dict(stat, strict=False)
        print(f'Load model.state_dict, {infos}')

    @staticmethod
    def _matched_state(state: Dict[str, torch.Tensor], params: Dict[str, torch.Tensor]):
        missed_list = []
        unmatched_list = []
        matched_state = {}
        for k, v in state.items():
            if k in params:
                if v.shape == params[k].shape:
                    matched_state[k] = params[k]
                else:
                    unmatched_list.append(k)
            else:
                missed_list.append(k)

        return matched_state, {'missed': missed_list, 'unmatched': unmatched_list}


    def fit(self, ):
        raise NotImplementedError('')

    def val(self, ):
        raise NotImplementedError('')