File size: 6,442 Bytes
e8861c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os

import torch
import torch.utils.data
import torchvision
from pycocotools import mask as coco_mask
from pycocotools.coco import COCO


def convert_coco_poly_to_mask(segmentations, height, width):
    masks = []
    for polygons in segmentations:
        rles = coco_mask.frPyObjects(polygons, height, width)
        mask = coco_mask.decode(rles)
        if len(mask.shape) < 3:
            mask = mask[..., None]
        mask = torch.as_tensor(mask, dtype=torch.uint8)
        mask = mask.any(dim=2)
        masks.append(mask)
    if masks:
        masks = torch.stack(masks, dim=0)
    else:
        masks = torch.zeros((0, height, width), dtype=torch.uint8)
    return masks


class ConvertCocoPolysToMask:
    def __call__(self, image, target):
        w, h = image.size

        image_id = target["image_id"]

        anno = target["annotations"]

        anno = [obj for obj in anno if obj["iscrowd"] == 0]

        boxes = [obj["bbox"] for obj in anno]
        # guard against no boxes via resizing
        boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
        boxes[:, 2:] += boxes[:, :2]
        boxes[:, 0::2].clamp_(min=0, max=w)
        boxes[:, 1::2].clamp_(min=0, max=h)

        classes = [obj["category_id"] for obj in anno]
        classes = torch.tensor(classes, dtype=torch.int64)

        segmentations = [obj["segmentation"] for obj in anno]
        masks = convert_coco_poly_to_mask(segmentations, h, w)

        keypoints = None
        if anno and "keypoints" in anno[0]:
            keypoints = [obj["keypoints"] for obj in anno]
            keypoints = torch.as_tensor(keypoints, dtype=torch.float32)
            num_keypoints = keypoints.shape[0]
            if num_keypoints:
                keypoints = keypoints.view(num_keypoints, -1, 3)

        keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
        boxes = boxes[keep]
        classes = classes[keep]
        masks = masks[keep]
        if keypoints is not None:
            keypoints = keypoints[keep]

        target = {}
        target["boxes"] = boxes
        target["labels"] = classes
        target["masks"] = masks
        target["image_id"] = image_id
        if keypoints is not None:
            target["keypoints"] = keypoints

        # for conversion to coco api
        area = torch.tensor([obj["area"] for obj in anno])
        iscrowd = torch.tensor([obj["iscrowd"] for obj in anno])
        target["area"] = area
        target["iscrowd"] = iscrowd

        return image, target


def _coco_remove_images_without_annotations(dataset, cat_list=None):
    def _has_only_empty_bbox(anno):
        return all(any(o <= 1 for o in obj["bbox"][2:]) for obj in anno)

    def _count_visible_keypoints(anno):
        return sum(sum(1 for v in ann["keypoints"][2::3] if v > 0) for ann in anno)

    min_keypoints_per_image = 10

    def _has_valid_annotation(anno):
        # if it's empty, there is no annotation
        if len(anno) == 0:
            return False
        # if all boxes have close to zero area, there is no annotation
        if _has_only_empty_bbox(anno):
            return False
        # keypoints task have a slight different criteria for considering
        # if an annotation is valid
        if "keypoints" not in anno[0]:
            return True
        # for keypoint detection tasks, only consider valid images those
        # containing at least min_keypoints_per_image
        if _count_visible_keypoints(anno) >= min_keypoints_per_image:
            return True
        return False

    ids = []
    for ds_idx, img_id in enumerate(dataset.ids):
        ann_ids = dataset.coco.getAnnIds(imgIds=img_id, iscrowd=None)
        anno = dataset.coco.loadAnns(ann_ids)
        if cat_list:
            anno = [obj for obj in anno if obj["category_id"] in cat_list]
        if _has_valid_annotation(anno):
            ids.append(ds_idx)

    dataset = torch.utils.data.Subset(dataset, ids)
    return dataset


def convert_to_coco_api(ds):
    coco_ds = COCO()
    # annotation IDs need to start at 1, not 0, see torchvision issue #1530
    ann_id = 1
    dataset = {"images": [], "categories": [], "annotations": []}
    categories = set()
    for img_idx in range(len(ds)):
        # find better way to get target
        # targets = ds.get_annotations(img_idx)
        img, targets = ds[img_idx]
        image_id = targets["image_id"].item()
        img_dict = {}
        img_dict["id"] = image_id
        img_dict["height"] = img.shape[-2]
        img_dict["width"] = img.shape[-1]
        dataset["images"].append(img_dict)
        bboxes = targets["boxes"].clone()
        bboxes[:, 2:] -= bboxes[:, :2]
        bboxes = bboxes.tolist()
        labels = targets["labels"].tolist()
        areas = targets["area"].tolist()
        iscrowd = targets["iscrowd"].tolist()
        if "masks" in targets:
            masks = targets["masks"]
            # make masks Fortran contiguous for coco_mask
            masks = masks.permute(0, 2, 1).contiguous().permute(0, 2, 1)
        if "keypoints" in targets:
            keypoints = targets["keypoints"]
            keypoints = keypoints.reshape(keypoints.shape[0], -1).tolist()
        num_objs = len(bboxes)
        for i in range(num_objs):
            ann = {}
            ann["image_id"] = image_id
            ann["bbox"] = bboxes[i]
            ann["category_id"] = labels[i]
            categories.add(labels[i])
            ann["area"] = areas[i]
            ann["iscrowd"] = iscrowd[i]
            ann["id"] = ann_id
            if "masks" in targets:
                ann["segmentation"] = coco_mask.encode(masks[i].numpy())
            if "keypoints" in targets:
                ann["keypoints"] = keypoints[i]
                ann["num_keypoints"] = sum(k != 0 for k in keypoints[i][2::3])
            dataset["annotations"].append(ann)
            ann_id += 1
    dataset["categories"] = [{"id": i} for i in sorted(categories)]
    coco_ds.dataset = dataset
    coco_ds.createIndex()
    return coco_ds


def get_coco_api_from_dataset(dataset):
    # FIXME: This is... awful?
    for _ in range(10):
        if isinstance(dataset, torchvision.datasets.CocoDetection):
            break
        if isinstance(dataset, torch.utils.data.Subset):
            dataset = dataset.dataset
    if isinstance(dataset, torchvision.datasets.CocoDetection):
        return dataset.coco
    return convert_to_coco_api(dataset)