File size: 4,716 Bytes
a25d5d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
"""
reference
- https://github.com/pytorch/vision/blob/main/references/detection/utils.py
- https://github.com/facebookresearch/detr/blob/master/util/misc.py#L406

by lyuwenyu
"""

import random
import numpy as np 

import torch
import torch.nn as nn 
import torch.distributed
import torch.distributed as tdist

from torch.nn.parallel import DistributedDataParallel as DDP

from torch.utils.data import DistributedSampler
from torch.utils.data.dataloader import DataLoader


def init_distributed():
    '''
    distributed setup
    args:
        backend (str), ('nccl', 'gloo')
    '''
    try:
        # # https://pytorch.org/docs/stable/elastic/run.html
        # LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))  
        # RANK = int(os.getenv('RANK', -1))
        # WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
        
        tdist.init_process_group(init_method='env://', )
        torch.distributed.barrier()

        rank = get_rank()
        device = torch.device(f'cuda:{rank}')
        torch.cuda.set_device(device)

        setup_print(rank == 0)
        print('Initialized distributed mode...')

        return True 

    except:
        print('Not init distributed mode.')
        return False 


def setup_print(is_main):
    '''This function disables printing when not in master process
    '''
    import builtins as __builtin__
    builtin_print = __builtin__.print

    def print(*args, **kwargs):
        force = kwargs.pop('force', False)
        if is_main or force:
            builtin_print(*args, **kwargs)

    __builtin__.print = print


def is_dist_available_and_initialized():
    if not tdist.is_available():
        return False
    if not tdist.is_initialized():
        return False
    return True


def get_rank():
    if not is_dist_available_and_initialized():
        return 0
    return tdist.get_rank()


def get_world_size():
    if not is_dist_available_and_initialized():
        return 1
    return tdist.get_world_size()

    
def is_main_process():
    return get_rank() == 0


def save_on_master(*args, **kwargs):
    if is_main_process():
        torch.save(*args, **kwargs)



def warp_model(model, find_unused_parameters=False, sync_bn=False,):
    if is_dist_available_and_initialized():
        rank = get_rank()
        model = nn.SyncBatchNorm.convert_sync_batchnorm(model) if sync_bn else model 
        model = DDP(model, device_ids=[rank], output_device=rank, find_unused_parameters=find_unused_parameters)
    return model


def warp_loader(loader, shuffle=False):        
    if is_dist_available_and_initialized():
        sampler = DistributedSampler(loader.dataset, shuffle=shuffle)
        loader = DataLoader(loader.dataset, 
                            loader.batch_size, 
                            sampler=sampler, 
                            drop_last=loader.drop_last, 
                            collate_fn=loader.collate_fn, 
                            pin_memory=loader.pin_memory,
                            num_workers=loader.num_workers, )
    return loader



def is_parallel(model) -> bool:
    # Returns True if model is of type DP or DDP
    return type(model) in (torch.nn.parallel.DataParallel, torch.nn.parallel.DistributedDataParallel)


def de_parallel(model) -> nn.Module:
    # De-parallelize a model: returns single-GPU model if model is of type DP or DDP
    return model.module if is_parallel(model) else model


def reduce_dict(data, avg=True):
    '''
    Args 
        data dict: input, {k: v, ...}
        avg bool: true
    '''
    world_size = get_world_size()
    if world_size < 2:
        return data
    
    with torch.no_grad():
        keys, values = [], []
        for k in sorted(data.keys()):
            keys.append(k)
            values.append(data[k])

        values = torch.stack(values, dim=0)
        tdist.all_reduce(values)

        if avg is True:
            values /= world_size
        
        _data = {k: v for k, v in zip(keys, values)}
    
    return _data



def all_gather(data):
    """
    Run all_gather on arbitrary picklable data (not necessarily tensors)
    Args:
        data: any picklable object
    Returns:
        list[data]: list of data gathered from each rank
    """
    world_size = get_world_size()
    if world_size == 1:
        return [data]
    data_list = [None] * world_size
    tdist.all_gather_object(data_list, data)
    return data_list

    
import time 
def sync_time():
    '''sync_time
    '''
    if torch.cuda.is_available():
        torch.cuda.synchronize()

    return time.time()



def set_seed(seed):
    # fix the seed for reproducibility
    seed = seed + get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)