File size: 5,792 Bytes
e8861c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import torch
import torchvision.transforms.functional as F

from packaging import version
from typing import Optional, List
from torch import Tensor

# needed due to empty tensor bug in pytorch and torchvision 0.5
import torchvision
if version.parse(torchvision.__version__) < version.parse('0.7'):
    from torchvision.ops import _new_empty_tensor
    from torchvision.ops.misc import _output_size


def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None):
    # type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor
    """
    Equivalent to nn.functional.interpolate, but with support for empty batch sizes.
    This will eventually be supported natively by PyTorch, and this
    class can go away.
    """
    if version.parse(torchvision.__version__) < version.parse('0.7'):
        if input.numel() > 0:
            return torch.nn.functional.interpolate(
                input, size, scale_factor, mode, align_corners
            )

        output_shape = _output_size(2, input, size, scale_factor)
        output_shape = list(input.shape[:-2]) + list(output_shape)
        return _new_empty_tensor(input, output_shape)
    else:
        return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners)



def crop(image, target, region):
    cropped_image = F.crop(image, *region)

    target = target.copy()
    i, j, h, w = region

    # should we do something wrt the original size?
    target["size"] = torch.tensor([h, w])

    fields = ["labels", "area", "iscrowd"]

    if "boxes" in target:
        boxes = target["boxes"]
        max_size = torch.as_tensor([w, h], dtype=torch.float32)
        cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
        cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
        cropped_boxes = cropped_boxes.clamp(min=0)
        area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
        target["boxes"] = cropped_boxes.reshape(-1, 4)
        target["area"] = area
        fields.append("boxes")

    if "masks" in target:
        # FIXME should we update the area here if there are no boxes?
        target['masks'] = target['masks'][:, i:i + h, j:j + w]
        fields.append("masks")

    # remove elements for which the boxes or masks that have zero area
    if "boxes" in target or "masks" in target:
        # favor boxes selection when defining which elements to keep
        # this is compatible with previous implementation
        if "boxes" in target:
            cropped_boxes = target['boxes'].reshape(-1, 2, 2)
            keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
        else:
            keep = target['masks'].flatten(1).any(1)

        for field in fields:
            target[field] = target[field][keep]

    return cropped_image, target


def hflip(image, target):
    flipped_image = F.hflip(image)

    w, h = image.size

    target = target.copy()
    if "boxes" in target:
        boxes = target["boxes"]
        boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0])
        target["boxes"] = boxes

    if "masks" in target:
        target['masks'] = target['masks'].flip(-1)

    return flipped_image, target


def resize(image, target, size, max_size=None):
    # size can be min_size (scalar) or (w, h) tuple

    def get_size_with_aspect_ratio(image_size, size, max_size=None):
        w, h = image_size
        if max_size is not None:
            min_original_size = float(min((w, h)))
            max_original_size = float(max((w, h)))
            if max_original_size / min_original_size * size > max_size:
                size = int(round(max_size * min_original_size / max_original_size))

        if (w <= h and w == size) or (h <= w and h == size):
            return (h, w)

        if w < h:
            ow = size
            oh = int(size * h / w)
        else:
            oh = size
            ow = int(size * w / h)
            
        # r = min(size / min(h, w), max_size / max(h, w))
        # ow = int(w * r)
        # oh = int(h * r)

        return (oh, ow)

    def get_size(image_size, size, max_size=None):
        if isinstance(size, (list, tuple)):
            return size[::-1]
        else:
            return get_size_with_aspect_ratio(image_size, size, max_size)

    size = get_size(image.size, size, max_size)
    rescaled_image = F.resize(image, size)

    if target is None:
        return rescaled_image, None

    ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size))
    ratio_width, ratio_height = ratios

    target = target.copy()
    if "boxes" in target:
        boxes = target["boxes"]
        scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height])
        target["boxes"] = scaled_boxes

    if "area" in target:
        area = target["area"]
        scaled_area = area * (ratio_width * ratio_height)
        target["area"] = scaled_area

    h, w = size
    target["size"] = torch.tensor([h, w])

    if "masks" in target:
        target['masks'] = interpolate(
            target['masks'][:, None].float(), size, mode="nearest")[:, 0] > 0.5

    return rescaled_image, target


def pad(image, target, padding):
    # assumes that we only pad on the bottom right corners
    padded_image = F.pad(image, (0, 0, padding[0], padding[1]))
    if target is None:
        return padded_image, None
    target = target.copy()
    # should we do something wrt the original size?
    target["size"] = torch.tensor(padded_image.size[::-1])
    if "masks" in target:
        target['masks'] = torch.nn.functional.pad(target['masks'], (0, padding[0], 0, padding[1]))
    return padded_image, target