Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch YOLOS model. """ | |
import inspect | |
import unittest | |
from transformers import YolosConfig | |
from transformers.testing_utils import require_torch, require_vision, slow, torch_device | |
from transformers.utils import cached_property, is_torch_available, is_vision_available | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, floats_tensor | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from torch import nn | |
from transformers import YolosForObjectDetection, YolosModel | |
from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST | |
if is_vision_available(): | |
from PIL import Image | |
from transformers import AutoFeatureExtractor | |
class YolosModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
image_size=[30, 30], | |
patch_size=2, | |
num_channels=3, | |
is_training=True, | |
use_labels=True, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
type_sequence_label_size=10, | |
initializer_range=0.02, | |
num_labels=3, | |
scope=None, | |
n_targets=8, | |
num_detection_tokens=10, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.is_training = is_training | |
self.use_labels = use_labels | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.num_labels = num_labels | |
self.scope = scope | |
self.n_targets = n_targets | |
self.num_detection_tokens = num_detection_tokens | |
# we set the expected sequence length (which is used in several tests) | |
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens | |
num_patches = (image_size[1] // patch_size) * (image_size[0] // patch_size) | |
self.expected_seq_len = num_patches + 1 + self.num_detection_tokens | |
def prepare_config_and_inputs(self): | |
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]]) | |
labels = None | |
if self.use_labels: | |
# labels is a list of Dict (each Dict being the labels for a given example in the batch) | |
labels = [] | |
for i in range(self.batch_size): | |
target = {} | |
target["class_labels"] = torch.randint( | |
high=self.num_labels, size=(self.n_targets,), device=torch_device | |
) | |
target["boxes"] = torch.rand(self.n_targets, 4, device=torch_device) | |
labels.append(target) | |
config = self.get_config() | |
return config, pixel_values, labels | |
def get_config(self): | |
return YolosConfig( | |
image_size=self.image_size, | |
patch_size=self.patch_size, | |
num_channels=self.num_channels, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
is_decoder=False, | |
initializer_range=self.initializer_range, | |
num_detection_tokens=self.num_detection_tokens, | |
num_labels=self.num_labels, | |
) | |
def create_and_check_model(self, config, pixel_values, labels): | |
model = YolosModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values) | |
self.parent.assertEqual( | |
result.last_hidden_state.shape, (self.batch_size, self.expected_seq_len, self.hidden_size) | |
) | |
def create_and_check_for_object_detection(self, config, pixel_values, labels): | |
model = YolosForObjectDetection(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values=pixel_values) | |
result = model(pixel_values) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) | |
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4)) | |
result = model(pixel_values=pixel_values, labels=labels) | |
self.parent.assertEqual(result.loss.shape, ()) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) | |
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, pixel_values, labels = config_and_inputs | |
inputs_dict = {"pixel_values": pixel_values} | |
return config, inputs_dict | |
class YolosModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
""" | |
Here we also overwrite some of the tests of test_modeling_common.py, as YOLOS does not use input_ids, inputs_embeds, | |
attention_mask and seq_length. | |
""" | |
all_model_classes = (YolosModel, YolosForObjectDetection) if is_torch_available() else () | |
pipeline_model_mapping = ( | |
{"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} | |
) | |
test_pruning = False | |
test_resize_embeddings = False | |
test_head_masking = False | |
test_torchscript = False | |
# special case for head model | |
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): | |
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) | |
if return_labels: | |
if model_class.__name__ == "YolosForObjectDetection": | |
labels = [] | |
for i in range(self.model_tester.batch_size): | |
target = {} | |
target["class_labels"] = torch.ones( | |
size=(self.model_tester.n_targets,), device=torch_device, dtype=torch.long | |
) | |
target["boxes"] = torch.ones( | |
self.model_tester.n_targets, 4, device=torch_device, dtype=torch.float | |
) | |
labels.append(target) | |
inputs_dict["labels"] = labels | |
return inputs_dict | |
def setUp(self): | |
self.model_tester = YolosModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=YolosConfig, has_text_modality=False, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_inputs_embeds(self): | |
# YOLOS does not use inputs_embeds | |
pass | |
def test_model_common_attributes(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) | |
x = model.get_output_embeddings() | |
self.assertTrue(x is None or isinstance(x, nn.Linear)) | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["pixel_values"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_attention_outputs(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.return_dict = True | |
# in YOLOS, the seq_len is different | |
seq_len = self.model_tester.expected_seq_len | |
for model_class in self.all_model_classes: | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = False | |
config.return_dict = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
attentions = outputs.attentions | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
# check that output_attentions also work using config | |
del inputs_dict["output_attentions"] | |
config.output_attentions = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
attentions = outputs.attentions | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, seq_len, seq_len], | |
) | |
out_len = len(outputs) | |
# Check attention is always last and order is fine | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
added_hidden_states = 1 | |
self.assertEqual(out_len + added_hidden_states, len(outputs)) | |
self_attentions = outputs.attentions | |
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(self_attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, seq_len, seq_len], | |
) | |
def test_hidden_states_output(self): | |
def check_hidden_states_output(inputs_dict, config, model_class): | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
hidden_states = outputs.hidden_states | |
expected_num_layers = getattr( | |
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 | |
) | |
self.assertEqual(len(hidden_states), expected_num_layers) | |
# YOLOS has a different seq_length | |
seq_length = self.model_tester.expected_seq_len | |
self.assertListEqual( | |
list(hidden_states[0].shape[-2:]), | |
[seq_length, self.model_tester.hidden_size], | |
) | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
inputs_dict["output_hidden_states"] = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
# check that output_hidden_states also work using config | |
del inputs_dict["output_hidden_states"] | |
config.output_hidden_states = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
def test_for_object_detection(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_object_detection(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = YolosModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
# We will verify our results on an image of cute cats | |
def prepare_img(): | |
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
return image | |
class YolosModelIntegrationTest(unittest.TestCase): | |
def default_feature_extractor(self): | |
return AutoFeatureExtractor.from_pretrained("hustvl/yolos-small") if is_vision_available() else None | |
def test_inference_object_detection_head(self): | |
model = YolosForObjectDetection.from_pretrained("hustvl/yolos-small").to(torch_device) | |
feature_extractor = self.default_feature_extractor | |
image = prepare_img() | |
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(inputs.pixel_values) | |
# verify outputs | |
expected_shape = torch.Size((1, 100, 92)) | |
self.assertEqual(outputs.logits.shape, expected_shape) | |
expected_slice_logits = torch.tensor( | |
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]], | |
device=torch_device, | |
) | |
expected_slice_boxes = torch.tensor( | |
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]], device=torch_device | |
) | |
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice_logits, atol=1e-4)) | |
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4)) | |
# verify postprocessing | |
results = feature_extractor.post_process_object_detection( | |
outputs, threshold=0.3, target_sizes=[image.size[::-1]] | |
)[0] | |
expected_scores = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(torch_device) | |
expected_labels = [75, 75, 17, 63, 17] | |
expected_slice_boxes = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(torch_device) | |
self.assertEqual(len(results["scores"]), 5) | |
self.assertTrue(torch.allclose(results["scores"], expected_scores, atol=1e-4)) | |
self.assertSequenceEqual(results["labels"].tolist(), expected_labels) | |
self.assertTrue(torch.allclose(results["boxes"][0, :], expected_slice_boxes)) | |