Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import XLMRobertaTokenizer, is_torch_available | |
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device | |
from ...generation.test_utils import GenerationTesterMixin | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
XmodConfig, | |
XmodForCausalLM, | |
XmodForMaskedLM, | |
XmodForMultipleChoice, | |
XmodForQuestionAnswering, | |
XmodForSequenceClassification, | |
XmodForTokenClassification, | |
XmodModel, | |
) | |
from transformers.models.xmod.modeling_xmod import XmodEmbeddings, create_position_ids_from_input_ids | |
class XmodModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_token_type_ids=True, | |
use_labels=True, | |
vocab_size=99, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
num_labels=3, | |
num_choices=4, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_token_type_ids = use_token_type_ids | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.num_labels = num_labels | |
self.num_choices = num_choices | |
self.scope = scope | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
sequence_labels = None | |
token_labels = None | |
choice_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = self.get_config() | |
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
def get_config(self): | |
return XmodConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
initializer_range=self.initializer_range, | |
default_language="en_XX", | |
) | |
def prepare_config_and_inputs_for_decoder(self): | |
( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = self.prepare_config_and_inputs() | |
config.is_decoder = True | |
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) | |
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) | |
return ( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) | |
def create_and_check_model( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = XmodModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
result = model(input_ids, token_type_ids=token_type_ids) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
def create_and_check_model_as_decoder( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
): | |
config.add_cross_attention = True | |
model = XmodModel(config) | |
model.to(torch_device) | |
model.eval() | |
result = model( | |
input_ids, | |
attention_mask=input_mask, | |
token_type_ids=token_type_ids, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
) | |
result = model( | |
input_ids, | |
attention_mask=input_mask, | |
token_type_ids=token_type_ids, | |
encoder_hidden_states=encoder_hidden_states, | |
) | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
def create_and_check_for_causal_lm( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
): | |
model = XmodForCausalLM(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def create_and_check_decoder_model_past_large_inputs( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
): | |
config.is_decoder = True | |
config.add_cross_attention = True | |
model = XmodForCausalLM(config=config).to(torch_device).eval() | |
# make sure that ids don't start with pad token | |
mask = input_ids.ne(config.pad_token_id).long() | |
input_ids = input_ids * mask | |
# first forward pass | |
outputs = model( | |
input_ids, | |
attention_mask=input_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
use_cache=True, | |
) | |
past_key_values = outputs.past_key_values | |
# create hypothetical multiple next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) | |
# make sure that ids don't start with pad token | |
mask = next_tokens.ne(config.pad_token_id).long() | |
next_tokens = next_tokens * mask | |
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) | |
# append to next input_ids and | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) | |
output_from_no_past = model( | |
next_input_ids, | |
attention_mask=next_attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
output_hidden_states=True, | |
)["hidden_states"][0] | |
output_from_past = model( | |
next_tokens, | |
attention_mask=next_attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
past_key_values=past_key_values, | |
output_hidden_states=True, | |
)["hidden_states"][0] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() | |
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
def create_and_check_for_masked_lm( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = XmodForMaskedLM(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def create_and_check_for_token_classification( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.num_labels = self.num_labels | |
model = XmodForTokenClassification(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
def create_and_check_for_multiple_choice( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.num_choices = self.num_choices | |
model = XmodForMultipleChoice(config=config) | |
model.to(torch_device) | |
model.eval() | |
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
result = model( | |
multiple_choice_inputs_ids, | |
attention_mask=multiple_choice_input_mask, | |
token_type_ids=multiple_choice_token_type_ids, | |
labels=choice_labels, | |
) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) | |
def create_and_check_for_question_answering( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = XmodForQuestionAnswering(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model( | |
input_ids, | |
attention_mask=input_mask, | |
token_type_ids=token_type_ids, | |
start_positions=sequence_labels, | |
end_positions=sequence_labels, | |
) | |
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} | |
return config, inputs_dict | |
class XmodModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
( | |
XmodForCausalLM, | |
XmodForMaskedLM, | |
XmodModel, | |
XmodForSequenceClassification, | |
XmodForTokenClassification, | |
XmodForMultipleChoice, | |
XmodForQuestionAnswering, | |
) | |
if is_torch_available() | |
else () | |
) | |
all_generative_model_classes = (XmodForCausalLM,) if is_torch_available() else () | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": XmodModel, | |
"fill-mask": XmodForMaskedLM, | |
"question-answering": XmodForQuestionAnswering, | |
"text-classification": XmodForSequenceClassification, | |
"text-generation": XmodForCausalLM, | |
"token-classification": XmodForTokenClassification, | |
"zero-shot": XmodForSequenceClassification, | |
} | |
if is_torch_available() | |
else {} | |
) | |
# TODO: Fix the failed tests | |
def is_pipeline_test_to_skip( | |
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name | |
): | |
if pipeline_test_casse_name == "QAPipelineTests" and not tokenizer_name.endswith("Fast"): | |
return True | |
return False | |
def setUp(self): | |
self.model_tester = XmodModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=XmodConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_model_various_embeddings(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
for type in ["absolute", "relative_key", "relative_key_query"]: | |
config_and_inputs[0].position_embedding_type = type | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_model_as_decoder(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() | |
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) | |
def test_model_as_decoder_with_default_input_mask(self): | |
# This regression test was failing with PyTorch < 1.3 | |
( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) = self.model_tester.prepare_config_and_inputs_for_decoder() | |
input_mask = None | |
self.model_tester.create_and_check_model_as_decoder( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) | |
def test_for_causal_lm(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() | |
self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) | |
def test_decoder_model_past_with_large_inputs(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() | |
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) | |
def test_decoder_model_past_with_large_inputs_relative_pos_emb(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() | |
config_and_inputs[0].position_embedding_type = "relative_key" | |
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) | |
def test_for_masked_lm(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) | |
def test_for_token_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_token_classification(*config_and_inputs) | |
def test_for_multiple_choice(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) | |
def test_for_question_answering(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_question_answering(*config_and_inputs) | |
def test_create_position_ids_respects_padding_index(self): | |
"""Ensure that the default position ids only assign a sequential . This is a regression | |
test for https://github.com/huggingface/transformers/issues/1761 | |
The position ids should be masked with the embedding object's padding index. Therefore, the | |
first available non-padding position index is XmodEmbeddings.padding_idx + 1 | |
""" | |
config = self.model_tester.prepare_config_and_inputs()[0] | |
model = XmodEmbeddings(config=config) | |
input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]]) | |
expected_positions = torch.as_tensor( | |
[[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]] | |
) | |
position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx) | |
self.assertEqual(position_ids.shape, expected_positions.shape) | |
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) | |
def test_create_position_ids_from_inputs_embeds(self): | |
"""Ensure that the default position ids only assign a sequential . This is a regression | |
test for https://github.com/huggingface/transformers/issues/1761 | |
The position ids should be masked with the embedding object's padding index. Therefore, the | |
first available non-padding position index is XmodEmbeddings.padding_idx + 1 | |
""" | |
config = self.model_tester.prepare_config_and_inputs()[0] | |
embeddings = XmodEmbeddings(config=config) | |
inputs_embeds = torch.empty(2, 4, 30) | |
expected_single_positions = [ | |
0 + embeddings.padding_idx + 1, | |
1 + embeddings.padding_idx + 1, | |
2 + embeddings.padding_idx + 1, | |
3 + embeddings.padding_idx + 1, | |
] | |
expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions]) | |
position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds) | |
self.assertEqual(position_ids.shape, expected_positions.shape) | |
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) | |
def test_set_default_language(self): | |
config = self.model_tester.prepare_config_and_inputs()[0] | |
model = XmodForMaskedLM(config=config) | |
model.set_default_language("en_XX") | |
self.assertEqual(model.config.default_language, "en_XX") | |
with self.assertRaises(ValueError): | |
model.set_default_language("xx_XX") | |
def test_freeze_embeddings_and_language_adapters(self): | |
config = self.model_tester.prepare_config_and_inputs()[0] | |
model = XmodForMaskedLM(config=config) | |
num_trainable_params_before = sum(p.numel() for p in model.parameters() if p.requires_grad) | |
model.freeze_embeddings_and_language_adapters() | |
num_trainable_params_after = sum(p.numel() for p in model.parameters() if p.requires_grad) | |
self.assertLess(num_trainable_params_after, num_trainable_params_before) | |
class XmodModelIntegrationTest(unittest.TestCase): | |
def test_xmod_base(self): | |
model = XmodModel.from_pretrained("facebook/xmod-base") | |
# language en_XX | |
model.set_default_language("en_XX") | |
input_ids = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) | |
# The dog is cute and lives in the garden house | |
expected_output_shape = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim | |
expected_output_values_last_dim = torch.tensor( | |
[[-0.2394, -0.0036, 0.1252, -0.0087, 0.1325, 0.0580, -0.2049, -0.1978, -0.1223, 0.0648, -0.2599, -0.3724]] | |
) | |
output = model(input_ids)["last_hidden_state"].detach() | |
self.assertEqual(output.shape, expected_output_shape) | |
# compare the actual values for a slice of last dim | |
self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3)) | |
# language de_DE | |
model.set_default_language("de_DE") | |
input_ids = torch.tensor([[0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2315, 58761, 18391, 5, 2]]) | |
# Der Hund ist niedlich und wohnt in einem Gartenhaus. | |
expected_output_shape = torch.Size((1, 16, 768)) # batch_size, sequence_length, embedding_vector_dim | |
# fmt: off | |
expected_output_values_last_dim = torch.tensor( | |
[[0.0162, 0.0075, -0.1882, 0.2335, -0.0952, -0.3994, -0.0317, -0.1174, 0.0177, 0.4280, -0.0240, -0.2138, | |
0.0785, -0.1045, -0.2811, -0.3220]] | |
) | |
# fmt: on | |
output = model(input_ids)["last_hidden_state"].detach() | |
self.assertEqual(output.shape, expected_output_shape) | |
# compare the actual values for a slice of last dim | |
self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3)) | |
def test_xmod_large_prenorm(self): | |
model = XmodModel.from_pretrained("facebook/xmod-large-prenorm") | |
# language en_XX | |
model.set_default_language("en_XX") | |
input_ids = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) | |
# The dog is cute and lives in the garden house | |
expected_output_shape = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim | |
# fmt: off | |
expected_output_values_last_dim = torch.tensor( | |
[[-0.0121, -0.0194, -0.0240, -0.0160, -0.0205, -0.0159, -0.0243, -0.0206, -0.0161, -0.0335, -0.0196, | |
-0.0141]] | |
) | |
# fmt: on | |
output = model(input_ids)["last_hidden_state"].detach() | |
self.assertEqual(output.shape, expected_output_shape) | |
# compare the actual values for a slice of last dim | |
self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3)) | |
# language de_DE | |
model.set_default_language("de_DE") | |
input_ids = torch.tensor([[0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2315, 58761, 18391, 5, 2]]) | |
# Der Hund ist niedlich und wohnt in einem Gartenhaus. | |
expected_output_shape = torch.Size((1, 16, 1024)) # batch_size, sequence_length, embedding_vector_dim | |
# fmt: off | |
expected_output_values_last_dim = torch.tensor( | |
[[-0.0120, -0.0262, -0.0253, -0.0112, -0.0128, -0.0164, -0.0080, -0.0081, -0.0192, -0.0117, -0.0170, | |
-0.0120, -0.0210, -0.0173, -0.0078, -0.0122]] | |
) | |
# fmt: on | |
output = model(input_ids)["last_hidden_state"].detach() | |
self.assertEqual(output.shape, expected_output_shape) | |
# compare the actual values for a slice of last dim | |
self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3)) | |
def test_multilingual_batch(self): | |
model = XmodModel.from_pretrained("facebook/xmod-base") | |
# fmt: off | |
input_ids = torch.tensor([ | |
[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2], | |
[0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2], | |
[0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2], | |
[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2], | |
]) | |
# fmt: on | |
lang_ids = torch.LongTensor([0, 8, 8, 0]) | |
expected_output_shape = torch.Size((4, 12, 768)) # batch_size, sequence_length, embedding_vector_dim | |
# fmt: off | |
expected_output_values_last_dim = torch.tensor([ | |
[-0.2394, -0.0036, 0.1252, -0.0087, 0.1325, 0.0580, -0.2049, -0.1978, -0.1223, 0.0648, -0.2599, -0.3724], | |
[-0.2668, -0.0235, -0.1739, 0.2266, -0.0901, -0.3482, 0.0105, -0.1915, 0.0397, 0.3822, 0.1836, -0.3407], | |
[-0.2668, -0.0235, -0.1739, 0.2266, -0.0901, -0.3482, 0.0105, -0.1915, 0.0397, 0.3822, 0.1836, -0.3407], | |
[-0.2394, -0.0036, 0.1252, -0.0087, 0.1325, 0.0580, -0.2049, -0.1978, -0.1223, 0.0648, -0.2599, -0.3724], | |
]) | |
# fmt: on | |
output = model(input_ids, lang_ids=lang_ids)["last_hidden_state"].detach() | |
self.assertEqual(output.shape, expected_output_shape) | |
# compare the actual values for a slice of last dim | |
self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3)) | |
def test_end_to_end_mask_fill(self): | |
tokenizer = XLMRobertaTokenizer.from_pretrained("xlm-roberta-base") | |
model = XmodForMaskedLM.from_pretrained("facebook/xmod-base", default_language="en_XX") | |
model.to(torch_device) | |
sentences = [ | |
"Hello, my dog is a little <mask>.", | |
"Hi <mask>!", | |
] | |
inputs = tokenizer(sentences, return_tensors="pt", padding=True) | |
input_ids = inputs["input_ids"].to(torch_device) | |
outputs = model( | |
input_ids=input_ids, | |
attention_mask=inputs["attention_mask"].to(torch_device), | |
) | |
probs = outputs.logits.softmax(dim=-1) | |
_, predictions = probs.topk(1) | |
predictions = predictions.squeeze(-1) | |
inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device) | |
output_non_padded = model(input_ids=inputs_non_padded) | |
probs_non_padded = output_non_padded.logits.softmax(dim=-1) | |
_, predictions_non_padded = probs_non_padded.topk(1) | |
predictions_non_padded = predictions_non_padded.squeeze(-1) | |
inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device) | |
output_padded = model(input_ids=inputs_padded) | |
probs_padded = output_padded.logits.softmax(dim=-1) | |
_, predictions_padded = probs_padded.topk(1) | |
predictions_padded = predictions_padded.squeeze(-1) | |
batch_out_sentence = tokenizer.batch_decode(predictions, skip_special_tokens=True) | |
non_padded_sentence = tokenizer.decode(predictions_non_padded[0], skip_special_tokens=True) | |
padded_sentence = tokenizer.decode(predictions_padded[0], skip_special_tokens=True) | |
expected_output_sentence = [ | |
"Hello, my dog is a little girl.", | |
"Hi everyone!", | |
] | |
self.assertListEqual(expected_output_sentence, batch_out_sentence) | |
self.assertListEqual(batch_out_sentence, [non_padded_sentence, padded_sentence]) | |