Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available | |
from transformers.testing_utils import require_tf, slow | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_tf_available(): | |
import tensorflow as tf | |
from transformers.models.xglm.modeling_tf_xglm import ( | |
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFXGLMForCausalLM, | |
TFXGLMModel, | |
) | |
class TFXGLMModelTester: | |
config_cls = XGLMConfig | |
config_updates = {} | |
hidden_act = "gelu" | |
def __init__( | |
self, | |
parent, | |
batch_size=14, | |
seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_labels=True, | |
vocab_size=99, | |
d_model=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
ffn_dim=37, | |
activation_function="gelu", | |
activation_dropout=0.1, | |
attention_dropout=0.1, | |
max_position_embeddings=512, | |
initializer_range=0.02, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = d_model | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.ffn_dim = ffn_dim | |
self.activation_function = activation_function | |
self.activation_dropout = activation_dropout | |
self.attention_dropout = attention_dropout | |
self.max_position_embeddings = max_position_embeddings | |
self.initializer_range = initializer_range | |
self.scope = None | |
self.bos_token_id = 0 | |
self.eos_token_id = 2 | |
self.pad_token_id = 1 | |
def get_large_model_config(self): | |
return XGLMConfig.from_pretrained("facebook/xglm-564M") | |
def prepare_config_and_inputs(self): | |
input_ids = tf.clip_by_value( | |
ids_tensor([self.batch_size, self.seq_length], self.vocab_size), clip_value_min=0, clip_value_max=3 | |
) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
config = self.get_config() | |
head_mask = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2) | |
return ( | |
config, | |
input_ids, | |
input_mask, | |
head_mask, | |
) | |
def get_config(self): | |
return XGLMConfig( | |
vocab_size=self.vocab_size, | |
d_model=self.hidden_size, | |
num_layers=self.num_hidden_layers, | |
attention_heads=self.num_attention_heads, | |
ffn_dim=self.ffn_dim, | |
activation_function=self.activation_function, | |
activation_dropout=self.activation_dropout, | |
attention_dropout=self.attention_dropout, | |
max_position_embeddings=self.max_position_embeddings, | |
initializer_range=self.initializer_range, | |
use_cache=True, | |
bos_token_id=self.bos_token_id, | |
eos_token_id=self.eos_token_id, | |
pad_token_id=self.pad_token_id, | |
return_dict=True, | |
) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
input_mask, | |
head_mask, | |
) = config_and_inputs | |
inputs_dict = { | |
"input_ids": input_ids, | |
"head_mask": head_mask, | |
} | |
return config, inputs_dict | |
class TFXGLMModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () | |
all_generative_model_classes = (TFXGLMForCausalLM,) if is_tf_available() else () | |
pipeline_model_mapping = ( | |
{"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} | |
) | |
test_onnx = False | |
test_missing_keys = False | |
test_pruning = False | |
def setUp(self): | |
self.model_tester = TFXGLMModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=XGLMConfig, n_embd=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model_common_attributes(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer) | |
if model_class in self.all_generative_model_classes: | |
x = model.get_output_embeddings() | |
assert isinstance(x, tf.keras.layers.Layer) | |
name = model.get_bias() | |
assert name is None | |
else: | |
x = model.get_output_embeddings() | |
assert x is None | |
name = model.get_bias() | |
assert name is None | |
def test_batch_generation(self): | |
model = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M") | |
tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M") | |
tokenizer.padding_side = "left" | |
# use different length sentences to test batching | |
sentences = [ | |
"Hello, my dog is a little", | |
"Today, I", | |
] | |
inputs = tokenizer(sentences, return_tensors="tf", padding=True) | |
outputs = model.generate(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"]) | |
inputs_non_padded = tokenizer(sentences[0], return_tensors="tf").input_ids | |
output_non_padded = model.generate(input_ids=inputs_non_padded) | |
num_paddings = ( | |
inputs_non_padded.shape[-1] | |
- tf.math.reduce_sum(tf.cast(inputs["attention_mask"][-1], dtype=tf.int64)).numpy() | |
) | |
inputs_padded = tokenizer(sentences[1], return_tensors="tf").input_ids | |
output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings) | |
batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True) | |
padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True) | |
expected_output_sentence = [ | |
"Hello, my dog is a little bit of a shy one, but he is very friendly", | |
"Today, I am going to share with you a few of my favorite things", | |
] | |
self.assertListEqual(expected_output_sentence, batch_out_sentence) | |
self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence]) | |
def test_model_from_pretrained(self): | |
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = TFXGLMModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
def test_resize_token_embeddings(self): | |
super().test_resize_token_embeddings() | |
class TFXGLMModelLanguageGenerationTest(unittest.TestCase): | |
def test_lm_generate_xglm(self, verify_outputs=True): | |
model = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M") | |
input_ids = tf.convert_to_tensor([[2, 268, 9865]], dtype=tf.int32) # The dog | |
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other | |
# fmt: off | |
expected_output_ids = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] | |
# fmt: on | |
output_ids = model.generate(input_ids, do_sample=False, num_beams=1) | |
if verify_outputs: | |
self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids) | |
def test_xglm_sample(self): | |
tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M") | |
model = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M") | |
tf.random.set_seed(0) | |
tokenized = tokenizer("Today is a nice day and", return_tensors="tf") | |
input_ids = tokenized.input_ids | |
output_ids = model.generate(input_ids, do_sample=True, seed=[7, 0]) | |
output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
EXPECTED_OUTPUT_STR = ( | |
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" | |
) | |
self.assertEqual(output_str, EXPECTED_OUTPUT_STR) | |
def test_lm_generate_xglm_left_padding(self): | |
"""Tests that the generated text is the same, regarless of left padding""" | |
tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M") | |
model = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M") | |
tokenizer.padding_side = "left" | |
generation_kwargs = { | |
"bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids], | |
"no_repeat_ngram_size": 2, | |
"do_sample": False, | |
"repetition_penalty": 1.3, | |
} | |
expected_output_string = ( | |
"Today is a beautiful day and I am so glad that we have the opportunity to spend time with" | |
) | |
sentences = ["Today is a beautiful day and"] | |
input_ids = tokenizer(sentences, return_tensors="tf", padding=True) | |
# using default length | |
output_ids = model.generate(**input_ids, **generation_kwargs) | |
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
self.assertEqual(output_strings[0], expected_output_string) | |
sentences = ["Today is a beautiful day and", "This is a very long input that we absolutely don't care about"] | |
input_ids = tokenizer(sentences, return_tensors="tf", padding=True) | |
# longer max length to capture the full length (remember: it is left padded) | |
output_ids = model.generate(**input_ids, **generation_kwargs, max_length=28) | |
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
self.assertEqual(output_strings[0], expected_output_string) | |