Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import itertools | |
import os | |
import random | |
import tempfile | |
import unittest | |
import numpy as np | |
from datasets import load_dataset | |
from transformers import is_speech_available | |
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio | |
from transformers.utils.import_utils import is_torch_available | |
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin | |
if is_speech_available(): | |
from transformers import WhisperFeatureExtractor | |
if is_torch_available(): | |
import torch | |
global_rng = random.Random() | |
def floats_list(shape, scale=1.0, rng=None, name=None): | |
"""Creates a random float32 tensor""" | |
if rng is None: | |
rng = global_rng | |
values = [] | |
for batch_idx in range(shape[0]): | |
values.append([]) | |
for _ in range(shape[1]): | |
values[-1].append(rng.random() * scale) | |
return values | |
class WhisperFeatureExtractionTester(unittest.TestCase): | |
def __init__( | |
self, | |
parent, | |
batch_size=7, | |
min_seq_length=400, | |
max_seq_length=2000, | |
feature_size=10, | |
hop_length=160, | |
chunk_length=8, | |
padding_value=0.0, | |
sampling_rate=4_000, | |
return_attention_mask=False, | |
do_normalize=True, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.min_seq_length = min_seq_length | |
self.max_seq_length = max_seq_length | |
self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) | |
self.padding_value = padding_value | |
self.sampling_rate = sampling_rate | |
self.return_attention_mask = return_attention_mask | |
self.do_normalize = do_normalize | |
self.feature_size = feature_size | |
self.chunk_length = chunk_length | |
self.hop_length = hop_length | |
def prepare_feat_extract_dict(self): | |
return { | |
"feature_size": self.feature_size, | |
"hop_length": self.hop_length, | |
"chunk_length": self.chunk_length, | |
"padding_value": self.padding_value, | |
"sampling_rate": self.sampling_rate, | |
"return_attention_mask": self.return_attention_mask, | |
"do_normalize": self.do_normalize, | |
} | |
def prepare_inputs_for_common(self, equal_length=False, numpify=False): | |
def _flatten(list_of_lists): | |
return list(itertools.chain(*list_of_lists)) | |
if equal_length: | |
speech_inputs = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] | |
else: | |
# make sure that inputs increase in size | |
speech_inputs = [ | |
floats_list((x, self.feature_size)) | |
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff) | |
] | |
if numpify: | |
speech_inputs = [np.asarray(x) for x in speech_inputs] | |
return speech_inputs | |
class WhisperFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase): | |
feature_extraction_class = WhisperFeatureExtractor if is_speech_available() else None | |
def setUp(self): | |
self.feat_extract_tester = WhisperFeatureExtractionTester(self) | |
def test_feat_extract_from_and_save_pretrained(self): | |
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
saved_file = feat_extract_first.save_pretrained(tmpdirname)[0] | |
check_json_file_has_correct_format(saved_file) | |
feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname) | |
dict_first = feat_extract_first.to_dict() | |
dict_second = feat_extract_second.to_dict() | |
mel_1 = feat_extract_first.mel_filters | |
mel_2 = feat_extract_second.mel_filters | |
self.assertTrue(np.allclose(mel_1, mel_2)) | |
self.assertEqual(dict_first, dict_second) | |
def test_feat_extract_to_json_file(self): | |
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
json_file_path = os.path.join(tmpdirname, "feat_extract.json") | |
feat_extract_first.to_json_file(json_file_path) | |
feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path) | |
dict_first = feat_extract_first.to_dict() | |
dict_second = feat_extract_second.to_dict() | |
mel_1 = feat_extract_first.mel_filters | |
mel_2 = feat_extract_second.mel_filters | |
self.assertTrue(np.allclose(mel_1, mel_2)) | |
self.assertEqual(dict_first, dict_second) | |
def test_call(self): | |
# Tests that all call wrap to encode_plus and batch_encode_plus | |
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) | |
# create three inputs of length 800, 1000, and 1200 | |
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] | |
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs] | |
# Test feature size | |
input_features = feature_extractor(np_speech_inputs, padding="max_length", return_tensors="np").input_features | |
self.assertTrue(input_features.ndim == 3) | |
self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames) | |
self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size) | |
# Test not batched input | |
encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features | |
encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features | |
self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3)) | |
# Test batched | |
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features | |
encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features | |
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): | |
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) | |
# Test truncation required | |
speech_inputs = [floats_list((1, x))[0] for x in range(200, (feature_extractor.n_samples + 500), 200)] | |
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs] | |
speech_inputs_truncated = [x[: feature_extractor.n_samples] for x in speech_inputs] | |
np_speech_inputs_truncated = [np.asarray(speech_input) for speech_input in speech_inputs_truncated] | |
encoded_sequences_1 = feature_extractor(np_speech_inputs, return_tensors="np").input_features | |
encoded_sequences_2 = feature_extractor(np_speech_inputs_truncated, return_tensors="np").input_features | |
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): | |
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) | |
def test_double_precision_pad(self): | |
import torch | |
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) | |
np_speech_inputs = np.random.rand(100, 32).astype(np.float64) | |
py_speech_inputs = np_speech_inputs.tolist() | |
for inputs in [py_speech_inputs, np_speech_inputs]: | |
np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np") | |
self.assertTrue(np_processed.input_features.dtype == np.float32) | |
pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt") | |
self.assertTrue(pt_processed.input_features.dtype == torch.float32) | |
def _load_datasamples(self, num_samples): | |
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
# automatic decoding with librispeech | |
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] | |
return [x["array"] for x in speech_samples] | |
def test_integration(self): | |
# fmt: off | |
EXPECTED_INPUT_FEATURES = torch.tensor( | |
[ | |
0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, | |
0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, | |
0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, | |
-0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 | |
] | |
) | |
# fmt: on | |
input_speech = self._load_datasamples(1) | |
feaure_extractor = WhisperFeatureExtractor() | |
input_features = feaure_extractor(input_speech, return_tensors="pt").input_features | |
self.assertTrue(torch.allclose(input_features[0, 0, :30], EXPECTED_INPUT_FEATURES, atol=1e-4)) | |
def test_zero_mean_unit_variance_normalization_trunc_np_longest(self): | |
feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) | |
audio = self._load_datasamples(1)[0] | |
audio = ((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue | |
audio = feat_extract.zero_mean_unit_var_norm([audio], attention_mask=None)[0] | |
self.assertTrue(np.all(np.mean(audio) < 1e-3)) | |
self.assertTrue(np.all(np.abs(np.var(audio) - 1) < 1e-3)) | |