Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch WavLM model. """ | |
import math | |
import unittest | |
import pytest | |
from datasets import load_dataset | |
from transformers import WavLMConfig, is_torch_available | |
from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ( | |
ModelTesterMixin, | |
_config_zero_init, | |
floats_tensor, | |
ids_tensor, | |
random_attention_mask, | |
) | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
Wav2Vec2FeatureExtractor, | |
WavLMForAudioFrameClassification, | |
WavLMForCTC, | |
WavLMForSequenceClassification, | |
WavLMForXVector, | |
WavLMModel, | |
) | |
class WavLMModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=1024, # speech is longer | |
is_training=False, | |
hidden_size=16, | |
feat_extract_norm="group", | |
feat_extract_dropout=0.0, | |
feat_extract_activation="gelu", | |
conv_dim=(32, 32, 32), | |
conv_stride=(4, 4, 4), | |
conv_kernel=(8, 8, 8), | |
conv_bias=False, | |
num_conv_pos_embeddings=16, | |
num_conv_pos_embedding_groups=2, | |
num_hidden_layers=4, | |
num_attention_heads=2, | |
hidden_dropout_prob=0.1, # this is most likely not correctly set yet | |
intermediate_size=20, | |
layer_norm_eps=1e-5, | |
hidden_act="gelu", | |
initializer_range=0.02, | |
vocab_size=32, | |
do_stable_layer_norm=False, | |
tdnn_dim=(32, 32), | |
tdnn_kernel=(3, 3), | |
tdnn_dilation=(1, 1), | |
xvector_output_dim=32, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.hidden_size = hidden_size | |
self.feat_extract_norm = feat_extract_norm | |
self.feat_extract_dropout = feat_extract_dropout | |
self.feat_extract_activation = feat_extract_activation | |
self.conv_dim = conv_dim | |
self.conv_stride = conv_stride | |
self.conv_kernel = conv_kernel | |
self.conv_bias = conv_bias | |
self.num_conv_pos_embeddings = num_conv_pos_embeddings | |
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.intermediate_size = intermediate_size | |
self.layer_norm_eps = layer_norm_eps | |
self.hidden_act = hidden_act | |
self.initializer_range = initializer_range | |
self.vocab_size = vocab_size | |
self.do_stable_layer_norm = do_stable_layer_norm | |
self.tdnn_dim = tdnn_dim | |
self.tdnn_kernel = tdnn_kernel | |
self.tdnn_dilation = tdnn_dilation | |
self.xvector_output_dim = xvector_output_dim | |
self.scope = scope | |
output_seq_length = self.seq_length | |
for kernel, stride in zip(self.conv_kernel, self.conv_stride): | |
output_seq_length = (output_seq_length - (kernel - 1)) / stride | |
self.output_seq_length = int(math.ceil(output_seq_length)) | |
self.encoder_seq_length = self.output_seq_length | |
def prepare_config_and_inputs(self): | |
input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0) | |
attention_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
config = self.get_config() | |
return config, input_values, attention_mask | |
def get_config(self): | |
return WavLMConfig( | |
hidden_size=self.hidden_size, | |
feat_extract_norm=self.feat_extract_norm, | |
feat_extract_dropout=self.feat_extract_dropout, | |
feat_extract_activation=self.feat_extract_activation, | |
conv_dim=self.conv_dim, | |
conv_stride=self.conv_stride, | |
conv_kernel=self.conv_kernel, | |
conv_bias=self.conv_bias, | |
num_conv_pos_embeddings=self.num_conv_pos_embeddings, | |
num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
intermediate_size=self.intermediate_size, | |
layer_norm_eps=self.layer_norm_eps, | |
hidden_act=self.hidden_act, | |
initializer_range=self.initializer_range, | |
vocab_size=self.vocab_size, | |
tdnn_dim=self.tdnn_dim, | |
tdnn_kernel=self.tdnn_kernel, | |
tdnn_dilation=self.tdnn_dilation, | |
xvector_output_dim=self.xvector_output_dim, | |
) | |
def create_and_check_model(self, config, input_values, attention_mask): | |
model = WavLMModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_values, attention_mask=attention_mask) | |
self.parent.assertEqual( | |
result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size) | |
) | |
def create_and_check_batch_inference(self, config, input_values, *args): | |
# test does not pass for models making use of `group_norm` | |
# check: https://github.com/pytorch/fairseq/issues/3227 | |
model = WavLMModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
input_values = input_values[:3] | |
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool) | |
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] | |
# pad input | |
for i in range(len(input_lengths)): | |
input_values[i, input_lengths[i] :] = 0.0 | |
attention_mask[i, input_lengths[i] :] = 0.0 | |
batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state | |
for i in range(input_values.shape[0]): | |
input_slice = input_values[i : i + 1, : input_lengths[i]] | |
output = model(input_slice).last_hidden_state | |
batch_output = batch_outputs[i : i + 1, : output.shape[1]] | |
self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3)) | |
def check_ctc_loss(self, config, input_values, *args): | |
model = WavLMForCTC(config=config) | |
model.to(torch_device) | |
# make sure that dropout is disabled | |
model.eval() | |
input_values = input_values[:3] | |
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long) | |
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] | |
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) | |
labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size) | |
# pad input | |
for i in range(len(input_lengths)): | |
input_values[i, input_lengths[i] :] = 0.0 | |
attention_mask[i, input_lengths[i] :] = 0 | |
model.config.ctc_loss_reduction = "sum" | |
sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() | |
model.config.ctc_loss_reduction = "mean" | |
mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() | |
self.parent.assertTrue(isinstance(sum_loss, float)) | |
self.parent.assertTrue(isinstance(mean_loss, float)) | |
def check_seq_classifier_loss(self, config, input_values, *args): | |
model = WavLMForSequenceClassification(config=config) | |
model.to(torch_device) | |
# make sure that dropout is disabled | |
model.eval() | |
input_values = input_values[:3] | |
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long) | |
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] | |
labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label)) | |
# pad input | |
for i in range(len(input_lengths)): | |
input_values[i, input_lengths[i] :] = 0.0 | |
attention_mask[i, input_lengths[i] :] = 0 | |
masked_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() | |
unmasked_loss = model(input_values, labels=labels).loss.item() | |
self.parent.assertTrue(isinstance(masked_loss, float)) | |
self.parent.assertTrue(isinstance(unmasked_loss, float)) | |
self.parent.assertTrue(masked_loss != unmasked_loss) | |
def check_ctc_training(self, config, input_values, *args): | |
config.ctc_zero_infinity = True | |
model = WavLMForCTC(config=config) | |
model.to(torch_device) | |
model.train() | |
# freeze feature encoder | |
model.freeze_feature_encoder() | |
input_values = input_values[:3] | |
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] | |
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) | |
labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size) | |
# pad input | |
for i in range(len(input_lengths)): | |
input_values[i, input_lengths[i] :] = 0.0 | |
if max_length_labels[i] < labels.shape[-1]: | |
# it's important that we make sure that target lenghts are at least | |
# one shorter than logit lenghts to prevent -inf | |
labels[i, max_length_labels[i] - 1 :] = -100 | |
loss = model(input_values, labels=labels).loss | |
self.parent.assertFalse(torch.isinf(loss).item()) | |
loss.backward() | |
def check_seq_classifier_training(self, config, input_values, *args): | |
config.ctc_zero_infinity = True | |
model = WavLMForSequenceClassification(config=config) | |
model.to(torch_device) | |
model.train() | |
# freeze everything but the classification head | |
model.freeze_base_model() | |
input_values = input_values[:3] | |
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] | |
labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label)) | |
# pad input | |
for i in range(len(input_lengths)): | |
input_values[i, input_lengths[i] :] = 0.0 | |
loss = model(input_values, labels=labels).loss | |
self.parent.assertFalse(torch.isinf(loss).item()) | |
loss.backward() | |
def check_labels_out_of_vocab(self, config, input_values, *args): | |
model = WavLMForCTC(config) | |
model.to(torch_device) | |
model.train() | |
input_values = input_values[:3] | |
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] | |
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) | |
labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100) | |
with pytest.raises(ValueError): | |
model(input_values, labels=labels) | |
def prepare_config_and_inputs_for_common(self): | |
config, input_values, attention_mask = self.prepare_config_and_inputs() | |
inputs_dict = {"input_values": input_values, "attention_mask": attention_mask} | |
return config, inputs_dict | |
class WavLMModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
(WavLMForCTC, WavLMModel, WavLMForAudioFrameClassification, WavLMForSequenceClassification, WavLMForXVector) | |
if is_torch_available() | |
else () | |
) | |
pipeline_model_mapping = ( | |
{ | |
"audio-classification": WavLMForSequenceClassification, | |
"automatic-speech-recognition": WavLMForCTC, | |
"feature-extraction": WavLMModel, | |
} | |
if is_torch_available() | |
else {} | |
) | |
test_pruning = False | |
test_headmasking = False | |
def setUp(self): | |
self.model_tester = WavLMModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=WavLMConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_ctc_loss_inference(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.check_ctc_loss(*config_and_inputs) | |
def test_seq_classifier_loss_inference(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.check_seq_classifier_loss(*config_and_inputs) | |
def test_ctc_train(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.check_ctc_training(*config_and_inputs) | |
def test_seq_classifier_train(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.check_seq_classifier_training(*config_and_inputs) | |
def test_labels_out_of_vocab(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.check_labels_out_of_vocab(*config_and_inputs) | |
# WavLM has no inputs_embeds | |
def test_inputs_embeds(self): | |
pass | |
# `input_ids` is renamed to `input_values` | |
def test_forward_signature(self): | |
pass | |
# WavLM cannot resize token embeddings | |
# since it has no tokens embeddings | |
def test_resize_tokens_embeddings(self): | |
pass | |
# WavLM has no inputs_embeds | |
# and thus the `get_input_embeddings` fn | |
# is not implemented | |
def test_model_common_attributes(self): | |
pass | |
# WavLM uses PyTorch's multi-head-attention class | |
# and thus can't retain gradients on attentions | |
def test_retain_grad_hidden_states_attentions(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.output_hidden_states = True | |
config.output_attentions = True | |
# no need to test all models as different heads yield the same functionality | |
model_class = self.all_model_classes[0] | |
model = model_class(config) | |
model.to(torch_device) | |
# set layer drop to 0 | |
model.config.layerdrop = 0.0 | |
input_values = inputs_dict["input_values"] | |
input_lengths = torch.tensor( | |
[input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device | |
) | |
output_lengths = model._get_feat_extract_output_lengths(input_lengths) | |
labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size) | |
inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"]) | |
inputs_dict["labels"] = labels | |
outputs = model(**inputs_dict) | |
output = outputs[0] | |
# Encoder-/Decoder-only models | |
hidden_states = outputs.hidden_states[0] | |
hidden_states.retain_grad() | |
output.flatten()[0].backward(retain_graph=True) | |
self.assertIsNotNone(hidden_states.grad) | |
def test_initialization(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
configs_no_init = _config_zero_init(config) | |
for model_class in self.all_model_classes: | |
model = model_class(config=configs_no_init) | |
for name, param in model.named_parameters(): | |
uniform_init_parms = [ | |
"conv.weight", | |
"masked_spec_embed", | |
"codevectors", | |
"quantizer.weight_proj.weight", | |
"project_hid.weight", | |
"project_hid.bias", | |
"project_q.weight", | |
"project_q.bias", | |
"feature_projection.projection.weight", | |
"feature_projection.projection.bias", | |
"label_embeddings_concat", | |
"rel_attn_embed", | |
"objective.weight", | |
] | |
if param.requires_grad: | |
if any([x in name for x in uniform_init_parms]): | |
self.assertTrue( | |
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
else: | |
self.assertIn( | |
((param.data.mean() * 1e9).round() / 1e9).item(), | |
[0.0, 1.0], | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
# overwrite from test_modeling_common | |
def _mock_init_weights(self, module): | |
if hasattr(module, "weight") and module.weight is not None: | |
module.weight.data.fill_(3) | |
if hasattr(module, "weight_g") and module.weight_g is not None: | |
module.weight_g.data.fill_(3) | |
if hasattr(module, "weight_v") and module.weight_v is not None: | |
module.weight_v.data.fill_(3) | |
if hasattr(module, "bias") and module.bias is not None: | |
module.bias.data.fill_(3) | |
if hasattr(module, "codevectors") and module.codevectors is not None: | |
module.codevectors.data.fill_(3) | |
if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None: | |
module.masked_spec_embed.data.fill_(3) | |
def test_feed_forward_chunking(self): | |
pass | |
def test_model_from_pretrained(self): | |
model = WavLMModel.from_pretrained("microsoft/wavlm-base-plus") | |
self.assertIsNotNone(model) | |
class WavLMModelIntegrationTest(unittest.TestCase): | |
def _load_datasamples(self, num_samples): | |
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
# automatic decoding with librispeech | |
speech_samples = ds.sort("id").filter( | |
lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)] | |
)[:num_samples]["audio"] | |
return [x["array"] for x in speech_samples] | |
def _load_superb(self, task, num_samples): | |
ds = load_dataset("anton-l/superb_dummy", task, split="test") | |
return ds[:num_samples] | |
def test_inference_base(self): | |
model = WavLMModel.from_pretrained("microsoft/wavlm-base-plus").to(torch_device) | |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( | |
"microsoft/wavlm-base-plus", return_attention_mask=True | |
) | |
input_speech = self._load_datasamples(2) | |
inputs = feature_extractor(input_speech, return_tensors="pt", padding=True) | |
input_values = inputs.input_values.to(torch_device) | |
attention_mask = inputs.attention_mask.to(torch_device) | |
with torch.no_grad(): | |
hidden_states_slice = ( | |
model(input_values, attention_mask=attention_mask).last_hidden_state[:, -2:, -2:].cpu() | |
) | |
EXPECTED_HIDDEN_STATES_SLICE = torch.tensor( | |
[[[0.0577, 0.1161], [0.0579, 0.1165]], [[0.0199, 0.1237], [0.0059, 0.0605]]] | |
) | |
# TODO: update the tolerance after the CI moves to torch 1.10 | |
self.assertTrue(torch.allclose(hidden_states_slice, EXPECTED_HIDDEN_STATES_SLICE, atol=5e-2)) | |
def test_inference_large(self): | |
model = WavLMModel.from_pretrained("microsoft/wavlm-large").to(torch_device) | |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( | |
"microsoft/wavlm-large", return_attention_mask=True | |
) | |
input_speech = self._load_datasamples(2) | |
inputs = feature_extractor(input_speech, return_tensors="pt", padding=True) | |
input_values = inputs.input_values.to(torch_device) | |
attention_mask = inputs.attention_mask.to(torch_device) | |
with torch.no_grad(): | |
hidden_states_slice = ( | |
model(input_values, attention_mask=attention_mask).last_hidden_state[:, -2:, -2:].cpu() | |
) | |
EXPECTED_HIDDEN_STATES_SLICE = torch.tensor( | |
[[[0.2122, 0.0500], [0.2118, 0.0563]], [[0.1353, 0.1818], [0.2453, 0.0595]]] | |
) | |
self.assertTrue(torch.allclose(hidden_states_slice, EXPECTED_HIDDEN_STATES_SLICE, rtol=5e-2)) | |
def test_inference_diarization(self): | |
model = WavLMForAudioFrameClassification.from_pretrained("microsoft/wavlm-base-plus-sd").to(torch_device) | |
processor = Wav2Vec2FeatureExtractor.from_pretrained("microsoft/wavlm-base-plus-sd") | |
input_data = self._load_superb("sd", 4) | |
inputs = processor(input_data["speech"], return_tensors="pt", padding=True, sampling_rate=16_000) | |
input_values = inputs.input_values.to(torch_device) | |
attention_mask = inputs.attention_mask.to(torch_device) | |
with torch.no_grad(): | |
outputs = model(input_values, attention_mask=attention_mask) | |
# labels is a one-hot array of shape (num_frames, num_speakers) | |
labels = (outputs.logits > 0).long() | |
# s3prl logits for the same batch | |
expected_logits = torch.tensor( | |
[ | |
[[-5.9566, -8.6554], [-5.7137, -8.9386], [-5.7906, -7.0973], [-5.7829, -5.9999]], | |
[[-5.2086, -7.7878], [-4.8890, -7.9312], [-4.2004, -3.9101], [-5.4480, -4.6932]], | |
[[-4.6105, -6.7178], [-5.1930, -6.1635], [-2.6228, -4.1123], [-2.7646, -3.1576]], | |
[[-4.4477, -7.9206], [-3.9339, -7.3707], [-4.9528, -4.8242], [-3.6921, -2.9687]], | |
], | |
device=torch_device, | |
) | |
self.assertEqual(labels[0, :, 0].sum(), 258) | |
self.assertEqual(labels[0, :, 1].sum(), 647) | |
# TODO: update the tolerance after the CI moves to torch 1.10 | |
self.assertTrue(torch.allclose(outputs.logits[:, :4], expected_logits, atol=1e-2)) | |
def test_inference_speaker_verification(self): | |
model = WavLMForXVector.from_pretrained("microsoft/wavlm-base-plus-sv").to(torch_device) | |
processor = Wav2Vec2FeatureExtractor.from_pretrained("microsoft/wavlm-base-plus-sv") | |
input_data = self._load_superb("si", 4) | |
inputs = processor(input_data["speech"], return_tensors="pt", padding=True) | |
labels = torch.tensor([5, 1, 1, 3], device=torch_device).T | |
with torch.no_grad(): | |
input_values = inputs.input_values.to(torch_device) | |
attention_mask = inputs.attention_mask.to(torch_device) | |
outputs = model(input_values, attention_mask=attention_mask, labels=labels) | |
embeddings = torch.nn.functional.normalize(outputs.embeddings, dim=-1) | |
cosine_sim = torch.nn.CosineSimilarity(dim=-1) | |
# id10002 vs id10002 | |
self.assertAlmostEqual(cosine_sim(embeddings[1], embeddings[2]).item(), 0.9787, 3) | |
# id10006 vs id10002 | |
self.assertAlmostEqual(cosine_sim(embeddings[0], embeddings[1]).item(), 0.5064, 3) | |
# id10002 vs id10004 | |
self.assertAlmostEqual(cosine_sim(embeddings[2], embeddings[3]).item(), 0.4780, 3) | |
# TODO: update the tolerance after the CI moves to torch 1.10 | |
self.assertAlmostEqual(outputs.loss.item(), 18.4154, 2) | |