Spaces:
Runtime error
Runtime error
# Copyright 2021 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
import shutil | |
import tempfile | |
import unittest | |
from transformers.models.wav2vec2 import Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, Wav2Vec2Processor | |
from transformers.models.wav2vec2.tokenization_wav2vec2 import VOCAB_FILES_NAMES | |
from transformers.utils import FEATURE_EXTRACTOR_NAME | |
from .test_feature_extraction_wav2vec2 import floats_list | |
class Wav2Vec2ProcessorTest(unittest.TestCase): | |
def setUp(self): | |
vocab = "<pad> <s> </s> <unk> | E T A O N I H S R D L U M W C F G Y P B V K ' X J Q Z".split(" ") | |
vocab_tokens = dict(zip(vocab, range(len(vocab)))) | |
self.add_kwargs_tokens_map = { | |
"pad_token": "<pad>", | |
"unk_token": "<unk>", | |
"bos_token": "<s>", | |
"eos_token": "</s>", | |
} | |
feature_extractor_map = { | |
"feature_size": 1, | |
"padding_value": 0.0, | |
"sampling_rate": 16000, | |
"return_attention_mask": False, | |
"do_normalize": True, | |
} | |
self.tmpdirname = tempfile.mkdtemp() | |
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) | |
self.feature_extraction_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME) | |
with open(self.vocab_file, "w", encoding="utf-8") as fp: | |
fp.write(json.dumps(vocab_tokens) + "\n") | |
with open(self.feature_extraction_file, "w", encoding="utf-8") as fp: | |
fp.write(json.dumps(feature_extractor_map) + "\n") | |
def get_tokenizer(self, **kwargs_init): | |
kwargs = self.add_kwargs_tokens_map.copy() | |
kwargs.update(kwargs_init) | |
return Wav2Vec2CTCTokenizer.from_pretrained(self.tmpdirname, **kwargs) | |
def get_feature_extractor(self, **kwargs): | |
return Wav2Vec2FeatureExtractor.from_pretrained(self.tmpdirname, **kwargs) | |
def tearDown(self): | |
shutil.rmtree(self.tmpdirname) | |
def test_save_load_pretrained_default(self): | |
tokenizer = self.get_tokenizer() | |
feature_extractor = self.get_feature_extractor() | |
processor = Wav2Vec2Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) | |
processor.save_pretrained(self.tmpdirname) | |
processor = Wav2Vec2Processor.from_pretrained(self.tmpdirname) | |
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) | |
self.assertIsInstance(processor.tokenizer, Wav2Vec2CTCTokenizer) | |
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string()) | |
self.assertIsInstance(processor.feature_extractor, Wav2Vec2FeatureExtractor) | |
def test_save_load_pretrained_additional_features(self): | |
processor = Wav2Vec2Processor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor()) | |
processor.save_pretrained(self.tmpdirname) | |
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") | |
feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0) | |
processor = Wav2Vec2Processor.from_pretrained( | |
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 | |
) | |
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) | |
self.assertIsInstance(processor.tokenizer, Wav2Vec2CTCTokenizer) | |
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string()) | |
self.assertIsInstance(processor.feature_extractor, Wav2Vec2FeatureExtractor) | |
def test_feature_extractor(self): | |
feature_extractor = self.get_feature_extractor() | |
tokenizer = self.get_tokenizer() | |
processor = Wav2Vec2Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) | |
raw_speech = floats_list((3, 1000)) | |
input_feat_extract = feature_extractor(raw_speech, return_tensors="np") | |
input_processor = processor(raw_speech, return_tensors="np") | |
for key in input_feat_extract.keys(): | |
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) | |
def test_tokenizer(self): | |
feature_extractor = self.get_feature_extractor() | |
tokenizer = self.get_tokenizer() | |
processor = Wav2Vec2Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) | |
input_str = "This is a test string" | |
encoded_processor = processor(text=input_str) | |
encoded_tok = tokenizer(input_str) | |
for key in encoded_tok.keys(): | |
self.assertListEqual(encoded_tok[key], encoded_processor[key]) | |
def test_tokenizer_decode(self): | |
feature_extractor = self.get_feature_extractor() | |
tokenizer = self.get_tokenizer() | |
processor = Wav2Vec2Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) | |
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] | |
decoded_processor = processor.batch_decode(predicted_ids) | |
decoded_tok = tokenizer.batch_decode(predicted_ids) | |
self.assertListEqual(decoded_tok, decoded_processor) | |
def test_model_input_names(self): | |
feature_extractor = self.get_feature_extractor() | |
tokenizer = self.get_tokenizer() | |
processor = Wav2Vec2Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) | |
self.assertListEqual( | |
processor.model_input_names, | |
feature_extractor.model_input_names, | |
msg="`processor` and `feature_extractor` model input names do not match", | |
) | |