Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch VideoMAE model. """ | |
import copy | |
import inspect | |
import unittest | |
import numpy as np | |
from huggingface_hub import hf_hub_download | |
from transformers import VideoMAEConfig | |
from transformers.models.auto import get_values | |
from transformers.testing_utils import require_torch, require_vision, slow, torch_device | |
from transformers.utils import cached_property, is_torch_available, is_vision_available | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from torch import nn | |
from transformers import ( | |
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, | |
VideoMAEForPreTraining, | |
VideoMAEForVideoClassification, | |
VideoMAEModel, | |
) | |
from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST | |
if is_vision_available(): | |
from transformers import VideoMAEFeatureExtractor | |
class VideoMAEModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
image_size=10, | |
num_channels=3, | |
patch_size=2, | |
tubelet_size=2, | |
num_frames=2, | |
is_training=True, | |
use_labels=True, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
type_sequence_label_size=10, | |
initializer_range=0.02, | |
mask_ratio=0.9, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.image_size = image_size | |
self.num_channels = num_channels | |
self.patch_size = patch_size | |
self.tubelet_size = tubelet_size | |
self.num_frames = num_frames | |
self.is_training = is_training | |
self.use_labels = use_labels | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.mask_ratio = mask_ratio | |
self.scope = scope | |
# in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame | |
self.num_patches_per_frame = (image_size // patch_size) ** 2 | |
self.seq_length = (num_frames // tubelet_size) * self.num_patches_per_frame | |
# use this variable to define bool_masked_pos | |
self.num_masks = int(mask_ratio * self.seq_length) | |
def prepare_config_and_inputs(self): | |
pixel_values = floats_tensor( | |
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] | |
) | |
labels = None | |
if self.use_labels: | |
labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
config = self.get_config() | |
return config, pixel_values, labels | |
def get_config(self): | |
return VideoMAEConfig( | |
image_size=self.image_size, | |
patch_size=self.patch_size, | |
num_channels=self.num_channels, | |
num_frames=self.num_frames, | |
tubelet_size=self.tubelet_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
is_decoder=False, | |
initializer_range=self.initializer_range, | |
) | |
def create_and_check_model(self, config, pixel_values, labels): | |
model = VideoMAEModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
def create_and_check_for_pretraining(self, config, pixel_values, labels): | |
model = VideoMAEForPreTraining(config) | |
model.to(torch_device) | |
model.eval() | |
# important: each video needs to have the same number of masked patches | |
# hence we define a single mask, which we then repeat for each example in the batch | |
mask = torch.ones((self.num_masks,)) | |
mask = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0))]) | |
bool_masked_pos = mask.expand(self.batch_size, -1).bool() | |
result = model(pixel_values, bool_masked_pos) | |
# model only returns predictions for masked patches | |
num_masked_patches = mask.sum().item() | |
decoder_num_labels = 3 * self.tubelet_size * self.patch_size**2 | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, num_masked_patches, decoder_num_labels)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, pixel_values, labels = config_and_inputs | |
inputs_dict = {"pixel_values": pixel_values} | |
return config, inputs_dict | |
class VideoMAEModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
""" | |
Here we also overwrite some of the tests of test_modeling_common.py, as VideoMAE does not use input_ids, inputs_embeds, | |
attention_mask and seq_length. | |
""" | |
all_model_classes = ( | |
(VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () | |
) | |
pipeline_model_mapping = ( | |
{"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} | |
if is_torch_available() | |
else {} | |
) | |
test_pruning = False | |
test_torchscript = False | |
test_resize_embeddings = False | |
test_head_masking = False | |
def setUp(self): | |
self.model_tester = VideoMAEModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=VideoMAEConfig, has_text_modality=False, hidden_size=37) | |
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): | |
inputs_dict = copy.deepcopy(inputs_dict) | |
if model_class == VideoMAEForPreTraining: | |
# important: each video needs to have the same number of masked patches | |
# hence we define a single mask, which we then repeat for each example in the batch | |
mask = torch.ones((self.model_tester.num_masks,)) | |
mask = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0))]) | |
bool_masked_pos = mask.expand(self.model_tester.batch_size, -1).bool() | |
inputs_dict["bool_masked_pos"] = bool_masked_pos.to(torch_device) | |
if return_labels: | |
if model_class in [ | |
*get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING), | |
]: | |
inputs_dict["labels"] = torch.zeros( | |
self.model_tester.batch_size, dtype=torch.long, device=torch_device | |
) | |
return inputs_dict | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_inputs_embeds(self): | |
pass | |
def test_model_common_attributes(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) | |
x = model.get_output_embeddings() | |
self.assertTrue(x is None or isinstance(x, nn.Linear)) | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["pixel_values"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_for_pretraining(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_pretraining(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = VideoMAEModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
def test_attention_outputs(self): | |
if not self.has_attentions: | |
pass | |
else: | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.return_dict = True | |
for model_class in self.all_model_classes: | |
num_visible_patches = self.model_tester.seq_length - self.model_tester.num_masks | |
seq_len = ( | |
num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length | |
) | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = False | |
config.return_dict = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
attentions = outputs.attentions | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
# check that output_attentions also work using config | |
del inputs_dict["output_attentions"] | |
config.output_attentions = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
attentions = outputs.attentions | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, seq_len, seq_len], | |
) | |
out_len = len(outputs) | |
# Check attention is always last and order is fine | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
self.assertEqual(out_len + 1, len(outputs)) | |
self_attentions = outputs.attentions | |
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(self_attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, seq_len, seq_len], | |
) | |
def test_hidden_states_output(self): | |
def check_hidden_states_output(inputs_dict, config, model_class): | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
hidden_states = outputs.hidden_states | |
expected_num_layers = self.model_tester.num_hidden_layers + 1 | |
self.assertEqual(len(hidden_states), expected_num_layers) | |
num_visible_patches = self.model_tester.seq_length - self.model_tester.num_masks | |
seq_length = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length | |
self.assertListEqual( | |
list(hidden_states[0].shape[-2:]), | |
[seq_length, self.model_tester.hidden_size], | |
) | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
inputs_dict["output_hidden_states"] = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
# check that output_hidden_states also work using config | |
del inputs_dict["output_hidden_states"] | |
config.output_hidden_states = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
# We will verify our results on a video of eating spaghetti | |
# Frame indices used: [164 168 172 176 181 185 189 193 198 202 206 210 215 219 223 227] | |
def prepare_video(): | |
file = hf_hub_download( | |
repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset" | |
) | |
video = np.load(file) | |
return list(video) | |
class VideoMAEModelIntegrationTest(unittest.TestCase): | |
def default_feature_extractor(self): | |
# logits were tested with a different mean and std, so we use the same here | |
return ( | |
VideoMAEFeatureExtractor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5]) | |
if is_vision_available() | |
else None | |
) | |
def test_inference_for_video_classification(self): | |
model = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics").to( | |
torch_device | |
) | |
feature_extractor = self.default_feature_extractor | |
video = prepare_video() | |
inputs = feature_extractor(video, return_tensors="pt").to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# verify the logits | |
expected_shape = torch.Size((1, 400)) | |
self.assertEqual(outputs.logits.shape, expected_shape) | |
expected_slice = torch.tensor([0.3669, -0.0688, -0.2421]).to(torch_device) | |
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) | |
def test_inference_for_pretraining(self): | |
model = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short").to(torch_device) | |
feature_extractor = self.default_feature_extractor | |
video = prepare_video() | |
inputs = feature_extractor(video, return_tensors="pt").to(torch_device) | |
# add boolean mask, indicating which patches to mask | |
local_path = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos", filename="bool_masked_pos.pt") | |
inputs["bool_masked_pos"] = torch.load(local_path) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# verify the logits | |
expected_shape = torch.Size([1, 1408, 1536]) | |
expected_slice = torch.tensor( | |
[[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]], device=torch_device | |
) | |
self.assertEqual(outputs.logits.shape, expected_shape) | |
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice, atol=1e-4)) | |
# verify the loss (`config.norm_pix_loss` = `True`) | |
expected_loss = torch.tensor([0.5142], device=torch_device) | |
self.assertTrue(torch.allclose(outputs.loss, expected_loss, atol=1e-4)) | |
# verify the loss (`config.norm_pix_loss` = `False`) | |
model = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short", norm_pix_loss=False).to( | |
torch_device | |
) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
expected_loss = torch.tensor(torch.tensor([0.6469]), device=torch_device) | |
self.assertTrue(torch.allclose(outputs.loss, expected_loss, atol=1e-4)) | |