Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch Van model. """ | |
import inspect | |
import math | |
import unittest | |
from transformers import VanConfig | |
from transformers.testing_utils import require_scipy, require_torch, require_vision, slow, torch_device | |
from transformers.utils import cached_property, is_scipy_available, is_torch_available, is_vision_available | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_scipy_available(): | |
from scipy import stats | |
if is_torch_available(): | |
import torch | |
from torch import nn | |
from transformers import VanForImageClassification, VanModel | |
from transformers.models.van.modeling_van import VAN_PRETRAINED_MODEL_ARCHIVE_LIST | |
if is_vision_available(): | |
from PIL import Image | |
from transformers import AutoFeatureExtractor | |
class VanModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=2, | |
image_size=224, | |
num_channels=3, | |
hidden_sizes=[16, 32, 64, 128], | |
depths=[1, 1, 1, 1], | |
is_training=True, | |
use_labels=True, | |
num_labels=3, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.image_size = image_size | |
self.num_channels = num_channels | |
self.hidden_sizes = hidden_sizes | |
self.depths = depths | |
self.is_training = is_training | |
self.use_labels = use_labels | |
self.num_labels = num_labels | |
self.type_sequence_label_size = num_labels | |
def prepare_config_and_inputs(self): | |
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
labels = None | |
if self.use_labels: | |
labels = ids_tensor([self.batch_size], self.num_labels) | |
config = self.get_config() | |
return config, pixel_values, labels | |
def get_config(self): | |
return VanConfig( | |
num_channels=self.num_channels, | |
hidden_sizes=self.hidden_sizes, | |
depths=self.depths, | |
num_labels=self.num_labels, | |
is_decoder=False, | |
) | |
def create_and_check_model(self, config, pixel_values, labels): | |
model = VanModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values) | |
# expected last hidden states: B, C, H // 32, W // 32 | |
self.parent.assertEqual( | |
result.last_hidden_state.shape, | |
(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), | |
) | |
def create_and_check_for_image_classification(self, config, pixel_values, labels): | |
model = VanForImageClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values, labels=labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, pixel_values, labels = config_and_inputs | |
inputs_dict = {"pixel_values": pixel_values} | |
return config, inputs_dict | |
class VanModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
""" | |
Here we also overwrite some of the tests of test_modeling_common.py, as Van does not use input_ids, inputs_embeds, | |
attention_mask and seq_length. | |
""" | |
all_model_classes = (VanModel, VanForImageClassification) if is_torch_available() else () | |
pipeline_model_mapping = ( | |
{"feature-extraction": VanModel, "image-classification": VanForImageClassification} | |
if is_torch_available() | |
else {} | |
) | |
test_pruning = False | |
test_resize_embeddings = False | |
test_head_masking = False | |
has_attentions = False | |
def setUp(self): | |
self.model_tester = VanModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=VanConfig, has_text_modality=False, hidden_size=37) | |
def test_config(self): | |
self.create_and_test_config_common_properties() | |
self.config_tester.create_and_test_config_to_json_string() | |
self.config_tester.create_and_test_config_to_json_file() | |
self.config_tester.create_and_test_config_from_and_save_pretrained() | |
self.config_tester.create_and_test_config_with_num_labels() | |
self.config_tester.check_config_can_be_init_without_params() | |
self.config_tester.check_config_arguments_init() | |
def create_and_test_config_common_properties(self): | |
return | |
def test_inputs_embeds(self): | |
pass | |
def test_model_common_attributes(self): | |
pass | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["pixel_values"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_initialization(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
configs_no_init = _config_zero_init(config) | |
for model_class in self.all_model_classes: | |
model = model_class(config=configs_no_init) | |
for name, module in model.named_modules(): | |
if isinstance(module, (nn.BatchNorm2d, nn.GroupNorm, nn.LayerNorm)): | |
self.assertTrue( | |
torch.all(module.weight == 1), | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
self.assertTrue( | |
torch.all(module.bias == 0), | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
elif isinstance(module, nn.Conv2d): | |
fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels | |
fan_out //= module.groups | |
std = math.sqrt(2.0 / fan_out) | |
# divide by std -> mean = 0, std = 1 | |
data = module.weight.data.cpu().flatten().numpy() / std | |
test = stats.anderson(data) | |
self.assertTrue(test.statistic > 0.05) | |
def test_hidden_states_output(self): | |
def check_hidden_states_output(inputs_dict, config, model_class): | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states | |
expected_num_stages = len(self.model_tester.hidden_sizes) | |
# van has no embeddings | |
self.assertEqual(len(hidden_states), expected_num_stages) | |
# Van's feature maps are of shape (batch_size, num_channels, height, width) | |
self.assertListEqual( | |
list(hidden_states[0].shape[-2:]), | |
[self.model_tester.image_size // 4, self.model_tester.image_size // 4], | |
) | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
inputs_dict["output_hidden_states"] = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
# check that output_hidden_states also work using config | |
del inputs_dict["output_hidden_states"] | |
config.output_hidden_states = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
def test_for_image_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_image_classification(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in VAN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = VanModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
# We will verify our results on an image of cute cats | |
def prepare_img(): | |
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
return image | |
class VanModelIntegrationTest(unittest.TestCase): | |
def default_feature_extractor(self): | |
return AutoFeatureExtractor.from_pretrained(VAN_PRETRAINED_MODEL_ARCHIVE_LIST[0]) | |
def test_inference_image_classification_head(self): | |
model = VanForImageClassification.from_pretrained(VAN_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(torch_device) | |
feature_extractor = self.default_feature_extractor | |
image = prepare_img() | |
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# verify the logits | |
expected_shape = torch.Size((1, 1000)) | |
self.assertEqual(outputs.logits.shape, expected_shape) | |
expected_slice = torch.tensor([0.1029, -0.0904, -0.6365]).to(torch_device) | |
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) | |