Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch TVLT model. """ | |
import copy | |
import inspect | |
import unittest | |
import numpy as np | |
from huggingface_hub import hf_hub_download | |
from transformers import ( | |
TvltConfig, | |
is_datasets_available, | |
is_speech_available, | |
is_torch_available, | |
is_vision_available, | |
) | |
from transformers.testing_utils import require_torch, require_vision, slow, torch_device | |
from transformers.utils import cached_property | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, floats_tensor | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
import torch.nn as nn | |
from transformers import TvltForAudioVisualClassification, TvltForPreTraining, TvltModel | |
from transformers.models.tvlt.modeling_tvlt import TVLT_PRETRAINED_MODEL_ARCHIVE_LIST | |
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_10 | |
else: | |
is_torch_greater_or_equal_than_1_10 = False | |
if is_datasets_available(): | |
from datasets import load_dataset | |
if is_vision_available(): | |
from transformers import TvltImageProcessor | |
if is_speech_available(): | |
from transformers import TvltFeatureExtractor | |
class TvltModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=2, | |
image_size=32, | |
spectrogram_length=32, | |
frequency_length=16, | |
image_patch_size=[2, 2], | |
audio_patch_size=[2, 2], | |
num_image_channels=3, | |
num_audio_channels=1, | |
num_frames=2, | |
hidden_size=128, | |
num_hidden_layers=12, | |
num_attention_heads=4, | |
intermediate_size=128, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.0, | |
attention_probs_dropout_prob=0.0, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
qkv_bias=True, | |
use_mean_pooling=True, | |
decoder_num_attention_heads=4, | |
decoder_hidden_size=64, | |
decoder_num_hidden_layers=2, | |
decoder_intermediate_size=128, | |
image_mask_ratio=0.75, | |
audio_mask_ratio=0.15, | |
audio_mask_type="frame-level", | |
task_matching=True, | |
task_mae=True, | |
num_labels=1, | |
is_training=True, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.image_size = image_size | |
self.spectrogram_length = spectrogram_length | |
self.frequency_length = frequency_length | |
self.image_patch_size = image_patch_size | |
self.audio_patch_size = audio_patch_size | |
self.num_image_channels = num_image_channels | |
self.num_audio_channels = num_audio_channels | |
self.num_frames = num_frames | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.qkv_bias = qkv_bias | |
self.use_mean_pooling = use_mean_pooling | |
self.decoder_num_attention_heads = decoder_num_attention_heads | |
self.decoder_hidden_size = decoder_hidden_size | |
self.decoder_num_hidden_layers = decoder_num_hidden_layers | |
self.decoder_intermediate_size = decoder_intermediate_size | |
self.image_mask_ratio = image_mask_ratio | |
self.audio_mask_ratio = audio_mask_ratio | |
self.task_matching = task_matching | |
self.task_mae = task_mae | |
self.num_labels = num_labels | |
self.expected_pixel_seq_len = (self.image_size // self.image_patch_size[0]) ** 2 * self.num_frames | |
self.expected_audio_seq_len = (self.spectrogram_length // self.audio_patch_size[0]) * ( | |
self.frequency_length // self.audio_patch_size[1] | |
) | |
# we set the expected sequence length (which is used in several tests) | |
# this is equal to the seq length of number of image/video patches + number of audio patches | |
self.expected_seq_len = self.expected_pixel_seq_len + self.expected_audio_seq_len + 1 | |
self.image_mae_output_dim = image_patch_size[0] ** 2 * num_image_channels | |
self.audio_mae_output_dim = audio_patch_size[0] * audio_patch_size[1] * num_audio_channels | |
self.is_training = is_training | |
def prepare_config_and_inputs(self): | |
pixel_values = floats_tensor( | |
[self.batch_size, self.num_frames, self.num_image_channels, self.image_size, self.image_size] | |
) | |
audio_values = floats_tensor( | |
[self.batch_size, self.num_audio_channels, self.spectrogram_length, self.frequency_length] | |
) | |
pixel_mask = floats_tensor([self.batch_size, self.expected_pixel_seq_len]) | |
audio_mask = floats_tensor([self.batch_size, self.expected_audio_seq_len]) | |
config = self.get_config() | |
return (config, pixel_values, audio_values, pixel_mask, audio_mask) | |
def prepare_config_and_inputs_for_pretraining(self): | |
pixel_values = floats_tensor( | |
[self.batch_size, self.num_frames, self.num_image_channels, self.image_size, self.image_size] | |
) | |
audio_values = floats_tensor( | |
[self.batch_size, self.num_audio_channels, self.spectrogram_length, self.frequency_length] | |
) | |
pixel_mask = floats_tensor([self.batch_size, self.expected_pixel_seq_len]) | |
audio_mask = floats_tensor([self.batch_size, self.expected_audio_seq_len]) | |
pixel_values_mixed = floats_tensor( | |
[self.batch_size, self.num_frames, self.num_image_channels, self.image_size, self.image_size] | |
) | |
pixel_mask_mixed = floats_tensor([self.batch_size, self.expected_pixel_seq_len]) | |
labels = floats_tensor([self.batch_size]) | |
config = self.get_config() | |
return ( | |
config, | |
pixel_values, | |
audio_values, | |
pixel_mask, | |
audio_mask, | |
pixel_values_mixed, | |
pixel_mask_mixed, | |
labels, | |
) | |
def get_config(self): | |
return TvltConfig( | |
image_size=self.image_size, | |
spectrogram_length=self.spectrogram_length, | |
frequency_length=self.frequency_length, | |
image_patch_size=self.image_patch_size, | |
audio_patch_size=self.audio_patch_size, | |
num_image_channels=self.num_image_channels, | |
num_audio_channels=self.num_audio_channels, | |
num_frames=self.num_frames, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
initializer_range=self.initializer_range, | |
layer_norm_eps=self.layer_norm_eps, | |
qkv_bias=self.qkv_bias, | |
use_mean_pooling=self.use_mean_pooling, | |
decoder_num_attention_heads=self.decoder_num_attention_heads, | |
decoder_hidden_size=self.decoder_hidden_size, | |
decoder_num_hidden_layers=self.decoder_num_hidden_layers, | |
decoder_intermediate_size=self.decoder_intermediate_size, | |
image_mask_ratio=self.image_mask_ratio, | |
audio_mask_ratio=self.audio_mask_ratio, | |
task_matching=self.task_matching, | |
task_mae=self.task_mae, | |
num_labels=self.num_labels, | |
) | |
def create_and_check_model(self, config, pixel_values, audio_values, pixel_mask, audio_mask): | |
model = TvltModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values, audio_values, pixel_mask=pixel_mask, audio_mask=audio_mask) | |
result = model(pixel_values, audio_values) | |
self.parent.assertEqual( | |
result.last_hidden_state.shape, (self.batch_size, self.expected_seq_len, self.hidden_size) | |
) | |
def create_and_check_for_audiovisual_classification( | |
self, config, pixel_values, audio_values, pixel_mask, audio_mask | |
): | |
model = TvltForAudioVisualClassification(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values, audio_values, pixel_mask=pixel_mask, audio_mask=audio_mask) | |
result = model(pixel_values, audio_values) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
def create_and_check_for_pretraining( | |
self, | |
config, | |
pixel_values, | |
audio_values, | |
pixel_mask, | |
audio_mask, | |
pixel_values_mixed, | |
pixel_mask_mixed, | |
labels, | |
): | |
model = TvltForPreTraining(config=config) | |
model.to(torch_device) | |
model.train() | |
result = model( | |
pixel_values, | |
audio_values, | |
pixel_mask, | |
audio_mask, | |
pixel_values_mixed=pixel_values_mixed, | |
pixel_mask_mixed=pixel_mask_mixed, | |
labels=labels, | |
) | |
self.parent.assertEqual( | |
result.pixel_logits.shape, (self.batch_size, self.expected_pixel_seq_len, self.image_mae_output_dim) | |
) | |
self.parent.assertEqual( | |
result.audio_logits.shape, (self.batch_size, self.expected_audio_seq_len, self.audio_mae_output_dim) | |
) | |
self.parent.assertEqual(result.matching_logits.shape, (self.batch_size, self.num_labels)) | |
def create_and_check_for_pretraining_inference( | |
self, | |
config, | |
pixel_values, | |
audio_values, | |
pixel_mask, | |
audio_mask, | |
pixel_values_mixed, | |
pixel_mask_mixed, | |
labels, | |
): | |
model = TvltForPreTraining(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model( | |
pixel_values, | |
audio_values, | |
pixel_mask, | |
audio_mask, | |
pixel_values_mixed=pixel_values_mixed, | |
pixel_mask_mixed=pixel_mask_mixed, | |
labels=labels, | |
) | |
if result.pixel_logits is not None: | |
self.parent.assertEqual( | |
result.pixel_logits.shape, (self.batch_size, self.expected_pixel_seq_len, self.image_mae_output_dim) | |
) | |
if result.audio_logits is not None: | |
self.parent.assertEqual( | |
result.audio_logits.shape, (self.batch_size, self.expected_audio_seq_len, self.audio_mae_output_dim) | |
) | |
self.parent.assertEqual(result.matching_logits.shape, (self.batch_size, self.num_labels)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
(config, pixel_values, audio_values, pixel_mask, audio_mask) = config_and_inputs | |
inputs_dict = { | |
"pixel_values": pixel_values, | |
"audio_values": audio_values, | |
"pixel_mask": pixel_mask, | |
"audio_mask": audio_mask, | |
} | |
return config, inputs_dict | |
def prepare_pixel_values(self): | |
return floats_tensor( | |
[self.batch_size, self.num_frames, self.num_image_channels, self.image_size, self.image_size] | |
) | |
def prepare_audio_values(self): | |
return floats_tensor( | |
[self.batch_size, self.num_audio_channels, self.spectrogram_length, self.frequency_length] | |
) | |
class TvltModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
(TvltModel, TvltForPreTraining, TvltForAudioVisualClassification) if is_torch_available() else () | |
) | |
pipeline_model_mapping = {"feature-extraction": TvltModel} if is_torch_available() else {} | |
fx_compatible = False | |
test_pruning = False | |
test_headmasking = False | |
test_torchscript = False | |
test_resize_embeddings = False | |
main_input_name = "pixel_values" | |
# TvltForAudioVisualClassification and TvltForPreTraining require special treatment | |
def _prepare_for_class(self, inputs_dict, model_class, return_labels=True): | |
inputs_dict = copy.deepcopy(inputs_dict) | |
if return_labels: | |
if model_class.__name__ == "TvltForAudioVisualClassification": | |
inputs_dict["labels"] = torch.zeros( | |
(self.model_tester.batch_size,), dtype=torch.long, device=torch_device | |
) | |
elif model_class.__name__ == "TvltForPreTraining": | |
inputs_dict["labels"] = torch.zeros( | |
(self.model_tester.batch_size,), dtype=torch.float, device=torch_device | |
) | |
inputs_dict["pixel_values_mixed"] = torch.zeros( | |
( | |
self.model_tester.batch_size, | |
self.model_tester.num_frames, | |
self.model_tester.num_image_channels, | |
self.model_tester.image_size, | |
self.model_tester.image_size, | |
), | |
dtype=torch.float, | |
device=torch_device, | |
) | |
inputs_dict["pixel_mask_mixed"] = torch.zeros( | |
(self.model_tester.batch_size, self.model_tester.expected_pixel_seq_len), | |
dtype=torch.float, | |
device=torch_device, | |
) | |
return inputs_dict | |
def setUp(self): | |
self.model_tester = TvltModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=TvltConfig, has_text_modality=False, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_inputs_embeds(self): | |
pass | |
def test_model_common_attributes(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
input_embeddings = model.get_input_embeddings() | |
self.assertIsInstance(input_embeddings, (tuple)) | |
for embedding in input_embeddings: | |
self.assertIsInstance(embedding, (nn.Module)) | |
x = model.get_output_embeddings() | |
self.assertTrue(x is None or isinstance(x, nn.Linear)) | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["pixel_values", "audio_values"] | |
self.assertListEqual(arg_names[:2], expected_arg_names) | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_for_audiovisual_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_audiovisual_classification(*config_and_inputs) | |
def test_for_pretraining(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_pretraining() | |
self.model_tester.create_and_check_for_pretraining(*config_and_inputs) | |
self.model_tester.create_and_check_for_pretraining_inference(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in TVLT_PRETRAINED_MODEL_ARCHIVE_LIST: | |
model = TvltModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
def test_training(self): | |
if not self.model_tester.is_training: | |
return | |
for model_class in self.all_model_classes[1:]: | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.return_dict = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.train() | |
inputs = self._prepare_for_class(inputs_dict, model_class) | |
for k, v in inputs.items(): | |
print(k, v.shape) | |
loss = model(**inputs).loss | |
loss.backward() | |
def test_training_gradient_checkpointing(self): | |
if not self.model_tester.is_training: | |
return | |
for model_class in self.all_model_classes[1:]: | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.use_cache = False | |
config.return_dict = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.gradient_checkpointing_enable() | |
model.train() | |
inputs = self._prepare_for_class(inputs_dict, model_class) | |
loss = model(**inputs).loss | |
loss.backward() | |
def test_attention_outputs(self): | |
if not self.has_attentions: | |
pass | |
else: | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.return_dict = True | |
for model_class in self.all_model_classes[2:]: | |
seq_len = self.model_tester.expected_seq_len | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = False | |
config.return_dict = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
attentions = outputs.attentions | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
# check that output_attentions also work using config | |
del inputs_dict["output_attentions"] | |
config.output_attentions = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
attentions = outputs.attentions | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, seq_len, seq_len], | |
) | |
out_len = len(outputs) | |
# Check attention is always last and order is fine | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
self.assertEqual(out_len + 1, len(outputs)) | |
self_attentions = outputs.attentions | |
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(self_attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, seq_len, seq_len], | |
) | |
def test_hidden_states_output(self): | |
def check_hidden_states_output(inputs_dict, config, model_class): | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
hidden_states = outputs.hidden_states | |
expected_num_layers = self.model_tester.num_hidden_layers + 1 | |
self.assertEqual(len(hidden_states), expected_num_layers) | |
seq_length = self.model_tester.expected_seq_len | |
self.assertListEqual( | |
list(hidden_states[0].shape[-2:]), | |
[seq_length, self.model_tester.hidden_size], | |
) | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes[2:]: | |
inputs_dict["output_hidden_states"] = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
# check that output_hidden_states also work using config | |
del inputs_dict["output_hidden_states"] | |
config.output_hidden_states = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
# We will verify our results on a video of eating spaghetti | |
# Frame indices used: [164 168 172 176 181 185 189 193 198 202 206 210 215 219 223 227] | |
def prepare_video(num_frames=8): | |
file = hf_hub_download( | |
repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset" | |
) | |
video = np.load(file)[:num_frames] | |
return list(video) | |
def prepare_audio(num_samples=1): | |
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
# automatic decoding with librispeech | |
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] | |
return [x["array"] for x in speech_samples] | |
class TvltModelIntegrationTest(unittest.TestCase): | |
def default_feature_extractor(self): | |
# logits were tested with a different mean and std, so we use the same here | |
return ( | |
TvltImageProcessor() if is_vision_available() else None, | |
TvltFeatureExtractor(), | |
) | |
def test_inference_for_base_model(self): | |
model = TvltModel.from_pretrained("ZinengTang/tvlt-base").to(torch_device) | |
image_processor, audio_feature_extractor = self.default_feature_extractor | |
video = prepare_video() | |
audio = prepare_audio() | |
video_inputs = image_processor(video, return_tensors="pt").to(torch_device) | |
audio_inputs = audio_feature_extractor(audio, return_tensors="pt").to(torch_device) | |
inputs = {} | |
inputs.update(video_inputs) | |
inputs.update(audio_inputs) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# verify the logits | |
expected_last_hidden_state_slice = torch.tensor([[-0.0186, -0.0691], [0.0242, -0.0398]], device=torch_device) | |
self.assertTrue( | |
torch.allclose(outputs.last_hidden_state[:, :2, :2], expected_last_hidden_state_slice, atol=1e-4) | |
) | |
def test_inference_for_pretraining(self): | |
model = TvltForPreTraining.from_pretrained("ZinengTang/tvlt-base").to(torch_device) | |
image_processor, audio_feature_extractor = self.default_feature_extractor | |
video = prepare_video() | |
video_mixed = prepare_video() | |
audio = prepare_audio() | |
video_inputs = image_processor(video, return_tensors="pt", mask_pixel=True).to(torch_device) | |
video_mixed_inputs = image_processor(video_mixed, is_mixed=True, return_tensors="pt").to(torch_device) | |
audio_inputs = audio_feature_extractor(audio, return_tensors="pt", mask_audio=True).to(torch_device) | |
labels = torch.tensor([[0.0]], device=torch_device) | |
inputs = {} | |
inputs.update(video_inputs) | |
inputs.update(video_mixed_inputs) | |
inputs.update(audio_inputs) | |
inputs.update({"labels": labels}) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# verify the logits | |
expected_pixel_logits_shape = torch.Size([1, 1568, 768]) | |
expected_audio_logits_shape = torch.Size([1, 96, 256]) | |
expected_matching_logits_shape = torch.Size([1, 1]) | |
if outputs.pixel_logits is not None: | |
self.assertEqual(outputs.pixel_logits.shape, expected_pixel_logits_shape) | |
if outputs.audio_logits is not None: | |
self.assertEqual(outputs.audio_logits.shape, expected_audio_logits_shape) | |
self.assertTrue(outputs.matching_logits.shape, expected_matching_logits_shape) | |