Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch TrOCR model. """ | |
import unittest | |
from transformers import TrOCRConfig | |
from transformers.testing_utils import is_torch_available, require_torch, torch_device | |
from ...generation.test_utils import GenerationTesterMixin | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, ids_tensor | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM | |
class TrOCRStandaloneDecoderModelTester: | |
def __init__( | |
self, | |
parent, | |
vocab_size=99, | |
batch_size=13, | |
d_model=16, | |
decoder_seq_length=7, | |
is_training=True, | |
is_decoder=True, | |
use_attention_mask=True, | |
use_cache=False, | |
use_labels=True, | |
decoder_start_token_id=2, | |
decoder_ffn_dim=32, | |
decoder_layers=4, | |
decoder_attention_heads=4, | |
max_position_embeddings=30, | |
pad_token_id=0, | |
bos_token_id=1, | |
eos_token_id=2, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.decoder_seq_length = decoder_seq_length | |
# For common tests | |
self.seq_length = self.decoder_seq_length | |
self.is_training = is_training | |
self.use_attention_mask = use_attention_mask | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.d_model = d_model | |
self.hidden_size = d_model | |
self.num_hidden_layers = decoder_layers | |
self.decoder_layers = decoder_layers | |
self.decoder_ffn_dim = decoder_ffn_dim | |
self.decoder_attention_heads = decoder_attention_heads | |
self.num_attention_heads = decoder_attention_heads | |
self.eos_token_id = eos_token_id | |
self.bos_token_id = bos_token_id | |
self.pad_token_id = pad_token_id | |
self.decoder_start_token_id = decoder_start_token_id | |
self.use_cache = use_cache | |
self.max_position_embeddings = max_position_embeddings | |
self.scope = None | |
self.decoder_key_length = decoder_seq_length | |
self.base_model_out_len = 2 | |
self.decoder_attention_idx = 1 | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) | |
attention_mask = None | |
if self.use_attention_mask: | |
attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) | |
lm_labels = None | |
if self.use_labels: | |
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) | |
config = TrOCRConfig( | |
vocab_size=self.vocab_size, | |
d_model=self.d_model, | |
decoder_layers=self.decoder_layers, | |
decoder_ffn_dim=self.decoder_ffn_dim, | |
decoder_attention_heads=self.decoder_attention_heads, | |
eos_token_id=self.eos_token_id, | |
bos_token_id=self.bos_token_id, | |
use_cache=self.use_cache, | |
pad_token_id=self.pad_token_id, | |
decoder_start_token_id=self.decoder_start_token_id, | |
max_position_embeddings=self.max_position_embeddings, | |
) | |
return (config, input_ids, attention_mask, lm_labels) | |
def create_and_check_decoder_model_past( | |
self, | |
config, | |
input_ids, | |
attention_mask, | |
lm_labels, | |
): | |
config.use_cache = True | |
model = TrOCRDecoder(config=config).to(torch_device).eval() | |
input_ids = input_ids[:2] | |
input_ids[input_ids == 0] += 1 | |
# first forward pass | |
outputs = model(input_ids, use_cache=True) | |
outputs_use_cache_conf = model(input_ids) | |
outputs_no_past = model(input_ids, use_cache=False) | |
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) | |
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) | |
past_key_values = outputs["past_key_values"] | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((2, 1), config.vocab_size - 1) + 1 | |
# append to next input_ids and | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
output_from_no_past = model(next_input_ids)["last_hidden_state"] | |
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() | |
# test that outputs are equal for slice | |
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, input_ids, attention_mask, lm_labels = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask} | |
return config, inputs_dict | |
class TrOCRStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () | |
all_generative_model_classes = (TrOCRForCausalLM,) if is_torch_available() else () | |
pipeline_model_mapping = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} | |
fx_compatible = True | |
test_pruning = False | |
def setUp(self): | |
self.model_tester = TrOCRStandaloneDecoderModelTester(self, is_training=False) | |
self.config_tester = ConfigTester(self, config_class=TrOCRConfig) | |
# not implemented currently | |
def test_inputs_embeds(self): | |
pass | |
# trocr has no base model | |
def test_save_load_fast_init_from_base(self): | |
pass | |
# trocr has no base model | |
def test_save_load_fast_init_to_base(self): | |
pass | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_decoder_model_past(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_decoder_model_past(*config_and_inputs) | |
# decoder cannot keep gradients | |
def test_retain_grad_hidden_states_attentions(self): | |
return | |