Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2020 The SqueezeBert authors and The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import SqueezeBertConfig, is_torch_available | |
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
SqueezeBertForMaskedLM, | |
SqueezeBertForMultipleChoice, | |
SqueezeBertForQuestionAnswering, | |
SqueezeBertForSequenceClassification, | |
SqueezeBertForTokenClassification, | |
SqueezeBertModel, | |
) | |
class SqueezeBertModelTester(object): | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_token_type_ids=False, | |
use_labels=True, | |
vocab_size=99, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=64, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
num_labels=3, | |
num_choices=4, | |
scope=None, | |
q_groups=2, | |
k_groups=2, | |
v_groups=2, | |
post_attention_groups=2, | |
intermediate_groups=4, | |
output_groups=1, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_token_type_ids = use_token_type_ids | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.num_labels = num_labels | |
self.num_choices = num_choices | |
self.scope = scope | |
self.q_groups = q_groups | |
self.k_groups = k_groups | |
self.v_groups = v_groups | |
self.post_attention_groups = post_attention_groups | |
self.intermediate_groups = intermediate_groups | |
self.output_groups = output_groups | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
sequence_labels = None | |
token_labels = None | |
choice_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = self.get_config() | |
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels | |
def get_config(self): | |
return SqueezeBertConfig( | |
embedding_size=self.hidden_size, | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
attention_probs_dropout_prob=self.hidden_dropout_prob, | |
attention_dropout=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
initializer_range=self.initializer_range, | |
q_groups=self.q_groups, | |
k_groups=self.k_groups, | |
v_groups=self.v_groups, | |
post_attention_groups=self.post_attention_groups, | |
intermediate_groups=self.intermediate_groups, | |
output_groups=self.output_groups, | |
) | |
def create_and_check_squeezebert_model( | |
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = SqueezeBertModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, input_mask) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
def create_and_check_squeezebert_for_masked_lm( | |
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = SqueezeBertForMaskedLM(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, labels=token_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def create_and_check_squeezebert_for_question_answering( | |
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = SqueezeBertForQuestionAnswering(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model( | |
input_ids, attention_mask=input_mask, start_positions=sequence_labels, end_positions=sequence_labels | |
) | |
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
def create_and_check_squeezebert_for_sequence_classification( | |
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.num_labels = self.num_labels | |
model = SqueezeBertForSequenceClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, labels=sequence_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
def create_and_check_squeezebert_for_token_classification( | |
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.num_labels = self.num_labels | |
model = SqueezeBertForTokenClassification(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, labels=token_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
def create_and_check_squeezebert_for_multiple_choice( | |
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.num_choices = self.num_choices | |
model = SqueezeBertForMultipleChoice(config=config) | |
model.to(torch_device) | |
model.eval() | |
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
result = model( | |
multiple_choice_inputs_ids, | |
attention_mask=multiple_choice_input_mask, | |
labels=choice_labels, | |
) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
(config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} | |
return config, inputs_dict | |
class SqueezeBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
( | |
SqueezeBertModel, | |
SqueezeBertForMaskedLM, | |
SqueezeBertForMultipleChoice, | |
SqueezeBertForQuestionAnswering, | |
SqueezeBertForSequenceClassification, | |
SqueezeBertForTokenClassification, | |
) | |
if is_torch_available() | |
else None | |
) | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": SqueezeBertModel, | |
"fill-mask": SqueezeBertForMaskedLM, | |
"question-answering": SqueezeBertForQuestionAnswering, | |
"text-classification": SqueezeBertForSequenceClassification, | |
"token-classification": SqueezeBertForTokenClassification, | |
"zero-shot": SqueezeBertForSequenceClassification, | |
} | |
if is_torch_available() | |
else {} | |
) | |
test_pruning = False | |
test_resize_embeddings = True | |
test_head_masking = False | |
def setUp(self): | |
self.model_tester = SqueezeBertModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=SqueezeBertConfig, dim=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_squeezebert_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_squeezebert_model(*config_and_inputs) | |
def test_for_masked_lm(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_squeezebert_for_masked_lm(*config_and_inputs) | |
def test_for_question_answering(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_squeezebert_for_question_answering(*config_and_inputs) | |
def test_for_sequence_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*config_and_inputs) | |
def test_for_token_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_squeezebert_for_token_classification(*config_and_inputs) | |
def test_for_multiple_choice(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = SqueezeBertModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class SqueezeBertModelIntegrationTest(unittest.TestCase): | |
def test_inference_classification_head(self): | |
model = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli") | |
input_ids = torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]]) | |
output = model(input_ids)[0] | |
expected_shape = torch.Size((1, 3)) | |
self.assertEqual(output.shape, expected_shape) | |
expected_tensor = torch.tensor([[0.6401, -0.0349, -0.6041]]) | |
self.assertTrue(torch.allclose(output, expected_tensor, atol=1e-4)) | |