Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch Splinter model. """ | |
import copy | |
import unittest | |
from transformers import is_torch_available | |
from transformers.testing_utils import require_torch, require_torch_multi_gpu, slow, torch_device | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import SplinterConfig, SplinterForPreTraining, SplinterForQuestionAnswering, SplinterModel | |
from transformers.models.splinter.modeling_splinter import SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST | |
class SplinterModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
num_questions=3, | |
seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_token_type_ids=True, | |
use_labels=True, | |
vocab_size=99, | |
hidden_size=32, | |
question_token_id=1, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
num_labels=3, | |
num_choices=4, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.num_questions = num_questions | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_token_type_ids = use_token_type_ids | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.question_token_id = question_token_id | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.num_labels = num_labels | |
self.num_choices = num_choices | |
self.scope = scope | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_ids[:, 1] = self.question_token_id | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
start_positions = None | |
end_positions = None | |
question_positions = None | |
if self.use_labels: | |
start_positions = ids_tensor([self.batch_size, self.num_questions], self.type_sequence_label_size) | |
end_positions = ids_tensor([self.batch_size, self.num_questions], self.type_sequence_label_size) | |
question_positions = ids_tensor([self.batch_size, self.num_questions], self.num_labels) | |
config = SplinterConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
is_decoder=False, | |
initializer_range=self.initializer_range, | |
question_token_id=self.question_token_id, | |
) | |
return (config, input_ids, token_type_ids, input_mask, start_positions, end_positions, question_positions) | |
def create_and_check_model( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
start_positions, | |
end_positions, | |
question_positions, | |
): | |
model = SplinterModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
result = model(input_ids, token_type_ids=token_type_ids) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
def create_and_check_for_question_answering( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
start_positions, | |
end_positions, | |
question_positions, | |
): | |
model = SplinterForQuestionAnswering(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model( | |
input_ids, | |
attention_mask=input_mask, | |
token_type_ids=token_type_ids, | |
start_positions=start_positions[:, 0], | |
end_positions=end_positions[:, 0], | |
) | |
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
def create_and_check_for_pretraining( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
start_positions, | |
end_positions, | |
question_positions, | |
): | |
model = SplinterForPreTraining(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model( | |
input_ids, | |
attention_mask=input_mask, | |
token_type_ids=token_type_ids, | |
start_positions=start_positions, | |
end_positions=end_positions, | |
question_positions=question_positions, | |
) | |
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.num_questions, self.seq_length)) | |
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.num_questions, self.seq_length)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
start_positions, | |
end_positions, | |
question_positions, | |
) = config_and_inputs | |
inputs_dict = { | |
"input_ids": input_ids, | |
"token_type_ids": token_type_ids, | |
"attention_mask": input_mask, | |
} | |
return config, inputs_dict | |
class SplinterModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
( | |
SplinterModel, | |
SplinterForQuestionAnswering, | |
SplinterForPreTraining, | |
) | |
if is_torch_available() | |
else () | |
) | |
pipeline_model_mapping = ( | |
{"feature-extraction": SplinterModel, "question-answering": SplinterForQuestionAnswering} | |
if is_torch_available() | |
else {} | |
) | |
# TODO: Fix the failed tests when this model gets more usage | |
def is_pipeline_test_to_skip( | |
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name | |
): | |
if pipeline_test_casse_name == "QAPipelineTests": | |
return True | |
elif pipeline_test_casse_name == "FeatureExtractionPipelineTests" and tokenizer_name.endswith("Fast"): | |
return True | |
return False | |
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): | |
inputs_dict = copy.deepcopy(inputs_dict) | |
if return_labels: | |
if issubclass(model_class, SplinterForPreTraining): | |
inputs_dict["start_positions"] = torch.zeros( | |
self.model_tester.batch_size, | |
self.model_tester.num_questions, | |
dtype=torch.long, | |
device=torch_device, | |
) | |
inputs_dict["end_positions"] = torch.zeros( | |
self.model_tester.batch_size, | |
self.model_tester.num_questions, | |
dtype=torch.long, | |
device=torch_device, | |
) | |
inputs_dict["question_positions"] = torch.zeros( | |
self.model_tester.batch_size, | |
self.model_tester.num_questions, | |
dtype=torch.long, | |
device=torch_device, | |
) | |
elif issubclass(model_class, SplinterForQuestionAnswering): | |
inputs_dict["start_positions"] = torch.zeros( | |
self.model_tester.batch_size, dtype=torch.long, device=torch_device | |
) | |
inputs_dict["end_positions"] = torch.zeros( | |
self.model_tester.batch_size, dtype=torch.long, device=torch_device | |
) | |
return inputs_dict | |
def setUp(self): | |
self.model_tester = SplinterModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=SplinterConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_model_various_embeddings(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
for type in ["absolute", "relative_key", "relative_key_query"]: | |
config_and_inputs[0].position_embedding_type = type | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_for_question_answering(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_question_answering(*config_and_inputs) | |
def test_for_pretraining(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_pretraining(*config_and_inputs) | |
def test_inputs_embeds(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) | |
if not self.is_encoder_decoder: | |
input_ids = inputs["input_ids"] | |
del inputs["input_ids"] | |
else: | |
encoder_input_ids = inputs["input_ids"] | |
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) | |
del inputs["input_ids"] | |
inputs.pop("decoder_input_ids", None) | |
wte = model.get_input_embeddings() | |
if not self.is_encoder_decoder: | |
inputs["inputs_embeds"] = wte(input_ids) | |
else: | |
inputs["inputs_embeds"] = wte(encoder_input_ids) | |
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) | |
with torch.no_grad(): | |
if isinstance(model, SplinterForPreTraining): | |
with self.assertRaises(TypeError): | |
# question_positions must not be None. | |
model(**inputs)[0] | |
else: | |
model(**inputs)[0] | |
def test_model_from_pretrained(self): | |
for model_name in SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = SplinterModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
# overwrite from common since `SplinterForPreTraining` could contain different number of question tokens in inputs. | |
# When the batch is distributed to multiple devices, each replica could get different values for the maximal number | |
# of question tokens (see `SplinterForPreTraining._prepare_question_positions()`), and the model returns different | |
# shape along dimension 1 (i.e. `num_questions`) that could not be combined into a single tensor as an output. | |
def test_multi_gpu_data_parallel_forward(self): | |
from torch import nn | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
# some params shouldn't be scattered by nn.DataParallel | |
# so just remove them if they are present. | |
blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"] | |
for k in blacklist_non_batched_params: | |
inputs_dict.pop(k, None) | |
# move input tensors to cuda:O | |
for k, v in inputs_dict.items(): | |
if torch.is_tensor(v): | |
inputs_dict[k] = v.to(0) | |
for model_class in self.all_model_classes: | |
# Skip this case since it will fail sometimes, as described above. | |
if model_class == SplinterForPreTraining: | |
continue | |
model = model_class(config=config) | |
model.to(0) | |
model.eval() | |
# Wrap model in nn.DataParallel | |
model = nn.DataParallel(model) | |
with torch.no_grad(): | |
_ = model(**self._prepare_for_class(inputs_dict, model_class)) | |
class SplinterModelIntegrationTest(unittest.TestCase): | |
def test_splinter_question_answering(self): | |
model = SplinterForQuestionAnswering.from_pretrained("tau/splinter-base-qass") | |
# Input: "[CLS] Brad was born in [QUESTION] . He returned to the United Kingdom later . [SEP]" | |
# Output should be the span "the United Kingdom" | |
input_ids = torch.tensor( | |
[[101, 7796, 1108, 1255, 1107, 104, 119, 1124, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102]] | |
) | |
output = model(input_ids) | |
expected_shape = torch.Size((1, 16)) | |
self.assertEqual(output.start_logits.shape, expected_shape) | |
self.assertEqual(output.end_logits.shape, expected_shape) | |
self.assertEqual(torch.argmax(output.start_logits), 10) | |
self.assertEqual(torch.argmax(output.end_logits), 12) | |
def test_splinter_pretraining(self): | |
model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass") | |
# Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]" | |
# Output should be the spans "Brad" and "the United Kingdom" | |
input_ids = torch.tensor( | |
[[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102]] | |
) | |
question_positions = torch.tensor([[1, 5]], dtype=torch.long) | |
output = model(input_ids, question_positions=question_positions) | |
expected_shape = torch.Size((1, 2, 16)) | |
self.assertEqual(output.start_logits.shape, expected_shape) | |
self.assertEqual(output.end_logits.shape, expected_shape) | |
self.assertEqual(torch.argmax(output.start_logits[0, 0]), 7) | |
self.assertEqual(torch.argmax(output.end_logits[0, 0]), 7) | |
self.assertEqual(torch.argmax(output.start_logits[0, 1]), 10) | |
self.assertEqual(torch.argmax(output.end_logits[0, 1]), 12) | |
def test_splinter_pretraining_loss_requires_question_positions(self): | |
model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass") | |
# Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]" | |
# Output should be the spans "Brad" and "the United Kingdom" | |
input_ids = torch.tensor( | |
[[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102]] | |
) | |
start_positions = torch.tensor([[7, 10]], dtype=torch.long) | |
end_positions = torch.tensor([7, 12], dtype=torch.long) | |
with self.assertRaises(TypeError): | |
model( | |
input_ids, | |
start_positions=start_positions, | |
end_positions=end_positions, | |
) | |
def test_splinter_pretraining_loss(self): | |
model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass") | |
# Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]" | |
# Output should be the spans "Brad" and "the United Kingdom" | |
input_ids = torch.tensor( | |
[ | |
[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102], | |
[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102], | |
] | |
) | |
start_positions = torch.tensor([[7, 10], [7, 10]], dtype=torch.long) | |
end_positions = torch.tensor([[7, 12], [7, 12]], dtype=torch.long) | |
question_positions = torch.tensor([[1, 5], [1, 5]], dtype=torch.long) | |
output = model( | |
input_ids, | |
start_positions=start_positions, | |
end_positions=end_positions, | |
question_positions=question_positions, | |
) | |
self.assertAlmostEqual(output.loss.item(), 0.0024, 4) | |
def test_splinter_pretraining_loss_with_padding(self): | |
model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass") | |
# Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]" | |
# Output should be the spans "Brad" and "the United Kingdom" | |
input_ids = torch.tensor( | |
[ | |
[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102], | |
] | |
) | |
start_positions = torch.tensor([[7, 10]], dtype=torch.long) | |
end_positions = torch.tensor([7, 12], dtype=torch.long) | |
question_positions = torch.tensor([[1, 5]], dtype=torch.long) | |
start_positions_with_padding = torch.tensor([[7, 10, 0]], dtype=torch.long) | |
end_positions_with_padding = torch.tensor([7, 12, 0], dtype=torch.long) | |
question_positions_with_padding = torch.tensor([[1, 5, 0]], dtype=torch.long) | |
output = model( | |
input_ids, | |
start_positions=start_positions, | |
end_positions=end_positions, | |
question_positions=question_positions, | |
) | |
output_with_padding = model( | |
input_ids, | |
start_positions=start_positions_with_padding, | |
end_positions=end_positions_with_padding, | |
question_positions=question_positions_with_padding, | |
) | |
self.assertAlmostEqual(output.loss.item(), output_with_padding.loss.item(), 4) | |
# Note that the original code uses 0 to denote padded question tokens | |
# and their start and end positions. As the pad_token_id of the model's | |
# config is used for the losse's ignore_index in SplinterForPreTraining, | |
# we add this test to ensure anybody making changes to the default | |
# value of the config, will be aware of the implication. | |
self.assertEqual(model.config.pad_token_id, 0) | |
def test_splinter_pretraining_prepare_question_positions(self): | |
model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass") | |
input_ids = torch.tensor( | |
[ | |
[101, 104, 1, 2, 104, 3, 4, 102], | |
[101, 1, 104, 2, 104, 3, 104, 102], | |
[101, 1, 2, 104, 104, 3, 4, 102], | |
[101, 1, 2, 3, 4, 5, 104, 102], | |
] | |
) | |
question_positions = torch.tensor([[1, 4, 0], [2, 4, 6], [3, 4, 0], [6, 0, 0]], dtype=torch.long) | |
output_without_positions = model(input_ids) | |
output_with_positions = model(input_ids, question_positions=question_positions) | |
self.assertTrue((output_without_positions.start_logits == output_with_positions.start_logits).all()) | |
self.assertTrue((output_without_positions.end_logits == output_with_positions.end_logits).all()) | |