Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch SpeechT5 model. """ | |
import copy | |
import inspect | |
import tempfile | |
import unittest | |
from transformers import SpeechT5Config, SpeechT5HifiGanConfig | |
from transformers.testing_utils import ( | |
is_torch_available, | |
require_sentencepiece, | |
require_tokenizers, | |
require_torch, | |
require_torchaudio, | |
slow, | |
torch_device, | |
) | |
from transformers.utils import cached_property | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ( | |
ModelTesterMixin, | |
_config_zero_init, | |
floats_tensor, | |
ids_tensor, | |
random_attention_mask, | |
) | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
SpeechT5ForSpeechToSpeech, | |
SpeechT5ForSpeechToText, | |
SpeechT5ForTextToSpeech, | |
SpeechT5HifiGan, | |
SpeechT5Model, | |
SpeechT5Processor, | |
) | |
def prepare_inputs_dict( | |
config, | |
input_ids=None, | |
input_values=None, | |
decoder_input_ids=None, | |
decoder_input_values=None, | |
attention_mask=None, | |
decoder_attention_mask=None, | |
head_mask=None, | |
decoder_head_mask=None, | |
cross_attn_head_mask=None, | |
): | |
if input_ids is not None: | |
encoder_dict = {"input_ids": input_ids} | |
else: | |
encoder_dict = {"input_values": input_values} | |
if decoder_input_ids is not None: | |
decoder_dict = {"decoder_input_ids": decoder_input_ids} | |
else: | |
decoder_dict = {"decoder_input_values": decoder_input_values} | |
if head_mask is None: | |
head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device) | |
if decoder_head_mask is None: | |
decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) | |
if cross_attn_head_mask is None: | |
cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) | |
return { | |
**encoder_dict, | |
**decoder_dict, | |
"attention_mask": attention_mask, | |
"decoder_attention_mask": decoder_attention_mask, | |
"head_mask": head_mask, | |
"decoder_head_mask": decoder_head_mask, | |
"cross_attn_head_mask": cross_attn_head_mask, | |
} | |
class SpeechT5ModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=False, | |
vocab_size=81, | |
hidden_size=24, | |
num_hidden_layers=4, | |
num_attention_heads=2, | |
intermediate_size=4, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
def prepare_config_and_inputs(self): | |
input_values = floats_tensor([self.batch_size, self.seq_length, self.hidden_size], scale=1.0) | |
attention_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
decoder_input_values = floats_tensor([self.batch_size, self.seq_length, self.hidden_size], scale=1.0) | |
decoder_attention_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
config = self.get_config() | |
inputs_dict = prepare_inputs_dict( | |
config, | |
input_values=input_values, | |
decoder_input_values=decoder_input_values, | |
attention_mask=attention_mask, | |
decoder_attention_mask=decoder_attention_mask, | |
) | |
return config, inputs_dict | |
def prepare_config_and_inputs_for_common(self): | |
config, inputs_dict = self.prepare_config_and_inputs() | |
return config, inputs_dict | |
def get_config(self): | |
return SpeechT5Config( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
encoder_layers=self.num_hidden_layers, | |
decoder_layers=self.num_hidden_layers, | |
encoder_attention_heads=self.num_attention_heads, | |
decoder_attention_heads=self.num_attention_heads, | |
encoder_ffn_dim=self.intermediate_size, | |
decoder_ffn_dim=self.intermediate_size, | |
) | |
def create_and_check_model_forward(self, config, inputs_dict): | |
model = SpeechT5Model(config=config).to(torch_device).eval() | |
input_values = inputs_dict["input_values"] | |
attention_mask = inputs_dict["attention_mask"] | |
decoder_input_values = inputs_dict["decoder_input_values"] | |
result = model(input_values, attention_mask=attention_mask, decoder_input_values=decoder_input_values) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
class SpeechT5ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = (SpeechT5Model,) if is_torch_available() else () | |
pipeline_model_mapping = ( | |
{"automatic-speech-recognition": SpeechT5ForSpeechToText, "feature-extraction": SpeechT5Model} | |
if is_torch_available() | |
else {} | |
) | |
is_encoder_decoder = True | |
test_pruning = False | |
test_headmasking = False | |
test_resize_embeddings = False | |
input_name = "input_values" | |
def setUp(self): | |
self.model_tester = SpeechT5ModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=SpeechT5Config, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model_forward(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model_forward(*config_and_inputs) | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = [ | |
"input_values", | |
"attention_mask", | |
"decoder_input_values", | |
"decoder_attention_mask", | |
] | |
expected_arg_names.extend( | |
["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"] | |
if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names | |
else ["encoder_outputs"] | |
) | |
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) | |
# this model has no inputs_embeds | |
def test_inputs_embeds(self): | |
pass | |
# this model has no input embeddings | |
def test_model_common_attributes(self): | |
pass | |
def test_retain_grad_hidden_states_attentions(self): | |
# decoder cannot keep gradients | |
pass | |
def test_torchscript_output_attentions(self): | |
# disabled because this model doesn't have decoder_input_ids | |
pass | |
def test_torchscript_output_hidden_state(self): | |
# disabled because this model doesn't have decoder_input_ids | |
pass | |
def test_torchscript_simple(self): | |
# disabled because this model doesn't have decoder_input_ids | |
pass | |
class SpeechT5ForSpeechToTextTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
encoder_seq_length=1024, # speech is longer | |
decoder_seq_length=7, | |
is_training=False, | |
hidden_size=24, | |
num_hidden_layers=4, | |
num_attention_heads=2, | |
intermediate_size=4, | |
conv_dim=(32, 32, 32), | |
conv_stride=(4, 4, 4), | |
conv_kernel=(8, 8, 8), | |
conv_bias=False, | |
num_conv_pos_embeddings=16, | |
num_conv_pos_embedding_groups=2, | |
vocab_size=81, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.encoder_seq_length = encoder_seq_length | |
self.decoder_seq_length = decoder_seq_length | |
self.is_training = is_training | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.conv_dim = conv_dim | |
self.conv_stride = conv_stride | |
self.conv_kernel = conv_kernel | |
self.conv_bias = conv_bias | |
self.num_conv_pos_embeddings = num_conv_pos_embeddings | |
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups | |
self.vocab_size = vocab_size | |
def prepare_config_and_inputs(self): | |
input_values = floats_tensor([self.batch_size, self.encoder_seq_length], scale=1.0) | |
attention_mask = random_attention_mask([self.batch_size, self.encoder_seq_length]) | |
decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size).clamp(2) | |
decoder_attention_mask = random_attention_mask([self.batch_size, self.decoder_seq_length]) | |
config = self.get_config() | |
inputs_dict = prepare_inputs_dict( | |
config, | |
input_values=input_values, | |
decoder_input_ids=decoder_input_ids, | |
attention_mask=attention_mask, | |
decoder_attention_mask=decoder_attention_mask, | |
) | |
return config, inputs_dict | |
def prepare_config_and_inputs_for_common(self): | |
config, inputs_dict = self.prepare_config_and_inputs() | |
return config, inputs_dict | |
def get_config(self): | |
return SpeechT5Config( | |
hidden_size=self.hidden_size, | |
encoder_layers=self.num_hidden_layers, | |
decoder_layers=self.num_hidden_layers, | |
encoder_attention_heads=self.num_attention_heads, | |
decoder_attention_heads=self.num_attention_heads, | |
encoder_ffn_dim=self.intermediate_size, | |
decoder_ffn_dim=self.intermediate_size, | |
conv_dim=self.conv_dim, | |
conv_stride=self.conv_stride, | |
conv_kernel=self.conv_kernel, | |
conv_bias=self.conv_bias, | |
num_conv_pos_embeddings=self.num_conv_pos_embeddings, | |
num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups, | |
vocab_size=self.vocab_size, | |
) | |
def create_and_check_model_forward(self, config, inputs_dict): | |
model = SpeechT5ForSpeechToText(config=config).to(torch_device).eval() | |
input_values = inputs_dict["input_values"] | |
attention_mask = inputs_dict["attention_mask"] | |
decoder_input_ids = inputs_dict["decoder_input_ids"] | |
result = model(input_values, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.decoder_seq_length, self.vocab_size)) | |
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): | |
model = SpeechT5ForSpeechToText(config=config).get_decoder().to(torch_device).eval() | |
input_ids = inputs_dict["decoder_input_ids"] | |
attention_mask = inputs_dict["decoder_attention_mask"] | |
# first forward pass | |
outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) | |
output, past_key_values = outputs.to_tuple() | |
# create hypothetical multiple next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size).clamp(2) | |
next_attn_mask = ids_tensor((self.batch_size, 3), 2) | |
# append to next input_ids and | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) | |
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] | |
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ | |
"last_hidden_state" | |
] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() | |
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2)) | |
class SpeechT5ForSpeechToTextTest(ModelTesterMixin, unittest.TestCase): | |
all_model_classes = (SpeechT5ForSpeechToText,) if is_torch_available() else () | |
all_generative_model_classes = (SpeechT5ForSpeechToText,) if is_torch_available() else () | |
is_encoder_decoder = True | |
test_pruning = False | |
test_headmasking = False | |
input_name = "input_values" | |
def setUp(self): | |
self.model_tester = SpeechT5ForSpeechToTextTester(self) | |
self.config_tester = ConfigTester(self, config_class=SpeechT5Config, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_save_load_strict(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname) | |
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) | |
self.assertEqual(info["missing_keys"], []) | |
def test_model_forward(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model_forward(*config_and_inputs) | |
def test_decoder_model_past_with_large_inputs(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) | |
def test_attention_outputs(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.return_dict = True | |
seq_len = getattr(self.model_tester, "seq_length", None) | |
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) | |
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) | |
decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) | |
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) | |
for model_class in self.all_model_classes: | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = False | |
config.return_dict = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
subsampled_encoder_seq_length = model.speecht5.encoder.prenet._get_feat_extract_output_lengths( | |
encoder_seq_length | |
) | |
subsampled_encoder_key_length = model.speecht5.encoder.prenet._get_feat_extract_output_lengths( | |
encoder_key_length | |
) | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
# check that output_attentions also work using config | |
del inputs_dict["output_attentions"] | |
config.output_attentions = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length], | |
) | |
out_len = len(outputs) | |
correct_outlen = 5 | |
# loss is at first position | |
if "labels" in inputs_dict: | |
correct_outlen += 1 # loss is added to beginning | |
if "past_key_values" in outputs: | |
correct_outlen += 1 # past_key_values have been returned | |
self.assertEqual(out_len, correct_outlen) | |
# decoder attentions | |
decoder_attentions = outputs.decoder_attentions | |
self.assertIsInstance(decoder_attentions, (list, tuple)) | |
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(decoder_attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], | |
) | |
# cross attentions | |
cross_attentions = outputs.cross_attentions | |
self.assertIsInstance(cross_attentions, (list, tuple)) | |
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(cross_attentions[0].shape[-3:]), | |
[ | |
self.model_tester.num_attention_heads, | |
decoder_seq_length, | |
subsampled_encoder_key_length, | |
], | |
) | |
# Check attention is always last and order is fine | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
added_hidden_states = 2 | |
self.assertEqual(out_len + added_hidden_states, len(outputs)) | |
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions | |
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(self_attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length], | |
) | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = [ | |
"input_values", | |
"attention_mask", | |
"decoder_input_ids", | |
"decoder_attention_mask", | |
] | |
expected_arg_names.extend( | |
["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"] | |
if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names | |
else ["encoder_outputs"] | |
) | |
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) | |
def test_hidden_states_output(self): | |
def check_hidden_states_output(inputs_dict, config, model_class): | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states | |
expected_num_layers = getattr( | |
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 | |
) | |
self.assertEqual(len(hidden_states), expected_num_layers) | |
if hasattr(self.model_tester, "encoder_seq_length"): | |
seq_length = self.model_tester.encoder_seq_length | |
else: | |
seq_length = self.model_tester.seq_length | |
subsampled_seq_length = model.speecht5.encoder.prenet._get_feat_extract_output_lengths(seq_length) | |
self.assertListEqual( | |
list(hidden_states[0].shape[-2:]), | |
[subsampled_seq_length, self.model_tester.hidden_size], | |
) | |
if config.is_encoder_decoder: | |
hidden_states = outputs.decoder_hidden_states | |
self.assertIsInstance(hidden_states, (list, tuple)) | |
self.assertEqual(len(hidden_states), expected_num_layers) | |
seq_len = getattr(self.model_tester, "seq_length", None) | |
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) | |
self.assertListEqual( | |
list(hidden_states[0].shape[-2:]), | |
[decoder_seq_length, self.model_tester.hidden_size], | |
) | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
inputs_dict["output_hidden_states"] = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
# check that output_hidden_states also work using config | |
del inputs_dict["output_hidden_states"] | |
config.output_hidden_states = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
def test_initialization(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
configs_no_init = _config_zero_init(config) | |
for model_class in self.all_model_classes: | |
model = model_class(config=configs_no_init) | |
for name, param in model.named_parameters(): | |
uniform_init_parms = [ | |
"conv.weight", | |
"masked_spec_embed", | |
"feature_projection.projection.weight", | |
"feature_projection.projection.bias", | |
] | |
if param.requires_grad: | |
if any([x in name for x in uniform_init_parms]): | |
self.assertTrue( | |
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
else: | |
self.assertIn( | |
((param.data.mean() * 1e9).round() / 1e9).item(), | |
[0.0, 1.0], | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
# this model has no inputs_embeds | |
def test_inputs_embeds(self): | |
pass | |
def test_resize_embeddings_untied(self): | |
original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
if not self.test_resize_embeddings: | |
return | |
original_config.tie_word_embeddings = False | |
# if model cannot untied embeddings -> leave test | |
if original_config.tie_word_embeddings: | |
return | |
for model_class in self.all_model_classes: | |
config = copy.deepcopy(original_config) | |
model = model_class(config).to(torch_device) | |
# if no output embeddings -> leave test | |
if model.get_output_embeddings() is None: | |
continue | |
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size | |
model_vocab_size = config.vocab_size | |
model.resize_token_embeddings(model_vocab_size + 10) | |
self.assertEqual(model.config.vocab_size, model_vocab_size + 10) | |
output_embeds = model.get_output_embeddings() | |
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10) | |
# Check bias if present | |
if output_embeds.bias is not None: | |
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10) | |
# Check that the model can still do a forward pass successfully (every parameter should be resized) | |
model(**self._prepare_for_class(inputs_dict, model_class)) | |
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size | |
model.resize_token_embeddings(model_vocab_size - 15) | |
self.assertEqual(model.config.vocab_size, model_vocab_size - 15) | |
# Check that it actually resizes the embeddings matrix | |
output_embeds = model.get_output_embeddings() | |
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15) | |
# Check bias if present | |
if output_embeds.bias is not None: | |
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15) | |
# Check that the model can still do a forward pass successfully (every parameter should be resized) | |
if "decoder_input_ids" in inputs_dict: | |
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) | |
# Check that the model can still do a forward pass successfully (every parameter should be resized) | |
model(**self._prepare_for_class(inputs_dict, model_class)) | |
def test_resize_tokens_embeddings(self): | |
original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
if not self.test_resize_embeddings: | |
return | |
for model_class in self.all_model_classes: | |
config = copy.deepcopy(original_config) | |
model = model_class(config) | |
model.to(torch_device) | |
if self.model_tester.is_training is False: | |
model.eval() | |
model_vocab_size = config.vocab_size | |
# Retrieve the embeddings and clone theme | |
model_embed = model.resize_token_embeddings(model_vocab_size) | |
cloned_embeddings = model_embed.weight.clone() | |
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size | |
model_embed = model.resize_token_embeddings(model_vocab_size + 10) | |
self.assertEqual(model.config.vocab_size, model_vocab_size + 10) | |
# Check that it actually resizes the embeddings matrix | |
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) | |
# Check that the model can still do a forward pass successfully (every parameter should be resized) | |
model(**self._prepare_for_class(inputs_dict, model_class)) | |
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size | |
model_embed = model.resize_token_embeddings(model_vocab_size - 15) | |
self.assertEqual(model.config.vocab_size, model_vocab_size - 15) | |
# Check that it actually resizes the embeddings matrix | |
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15) | |
# make sure that decoder_input_ids are resized | |
if "decoder_input_ids" in inputs_dict: | |
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) | |
model(**self._prepare_for_class(inputs_dict, model_class)) | |
# Check that adding and removing tokens has not modified the first part of the embedding matrix. | |
models_equal = True | |
for p1, p2 in zip(cloned_embeddings, model_embed.weight): | |
if p1.data.ne(p2.data).sum() > 0: | |
models_equal = False | |
self.assertTrue(models_equal) | |
def test_retain_grad_hidden_states_attentions(self): | |
# decoder cannot keep gradients | |
pass | |
# training is not supported yet | |
def test_training(self): | |
pass | |
def test_training_gradient_checkpointing(self): | |
pass | |
# overwrite from test_modeling_common | |
def _mock_init_weights(self, module): | |
if hasattr(module, "weight") and module.weight is not None: | |
module.weight.data.fill_(3) | |
if hasattr(module, "weight_g") and module.weight_g is not None: | |
module.weight_g.data.fill_(3) | |
if hasattr(module, "weight_v") and module.weight_v is not None: | |
module.weight_v.data.fill_(3) | |
if hasattr(module, "bias") and module.bias is not None: | |
module.bias.data.fill_(3) | |
if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None: | |
module.masked_spec_embed.data.fill_(3) | |
class SpeechT5ForSpeechToTextIntegrationTests(unittest.TestCase): | |
def default_processor(self): | |
return SpeechT5Processor.from_pretrained("microsoft/speecht5_asr") | |
def _load_datasamples(self, num_samples): | |
from datasets import load_dataset | |
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
# automatic decoding with librispeech | |
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] | |
return [x["array"] for x in speech_samples] | |
def test_generation_librispeech(self): | |
model = SpeechT5ForSpeechToText.from_pretrained("microsoft/speecht5_asr") | |
model.to(torch_device) | |
processor = self.default_processor | |
input_speech = self._load_datasamples(1) | |
input_values = processor(audio=input_speech, return_tensors="pt").input_values.to(torch_device) | |
generated_ids = model.generate(input_values) | |
generated_transcript = processor.batch_decode(generated_ids, skip_special_tokens=True) | |
EXPECTED_TRANSCRIPTIONS = [ | |
"mister quilter is the apostle of the middle classes and we are glad to welcome his gospel" | |
] | |
self.assertListEqual(generated_transcript, EXPECTED_TRANSCRIPTIONS) | |
def test_generation_librispeech_batched(self): | |
model = SpeechT5ForSpeechToText.from_pretrained("microsoft/speecht5_asr") | |
model.to(torch_device) | |
processor = self.default_processor | |
input_speech = self._load_datasamples(4) | |
inputs = processor(audio=input_speech, return_tensors="pt", padding=True) | |
input_values = inputs.input_values.to(torch_device) | |
attention_mask = inputs.attention_mask.to(torch_device) | |
generated_ids = model.generate(input_values, attention_mask=attention_mask) | |
generated_transcripts = processor.batch_decode(generated_ids, skip_special_tokens=True) | |
EXPECTED_TRANSCRIPTIONS = [ | |
"mister quilter is the apostle of the middle classes and we are glad to welcome his gospel", | |
"nor is mister quilter's manner less interesting than his matter", | |
"he tells us that at this festive season of the year with christmas and rosebeaf looming before us" | |
" similars drawn from eating and its results occur most readily to the mind", | |
"he has grave doubts whether sir frederick latin's work is really greek after all and can discover in it" | |
" but little of rocky ithica", | |
] | |
self.assertListEqual(generated_transcripts, EXPECTED_TRANSCRIPTIONS) | |
class SpeechT5ForTextToSpeechTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
encoder_seq_length=7, | |
decoder_seq_length=1024, # speech is longer | |
is_training=False, | |
hidden_size=24, | |
num_hidden_layers=4, | |
num_attention_heads=2, | |
intermediate_size=4, | |
vocab_size=81, | |
num_mel_bins=20, | |
reduction_factor=2, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.encoder_seq_length = encoder_seq_length | |
self.decoder_seq_length = decoder_seq_length | |
self.is_training = is_training | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.vocab_size = vocab_size | |
self.num_mel_bins = num_mel_bins | |
self.reduction_factor = reduction_factor | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size).clamp(2) | |
attention_mask = random_attention_mask([self.batch_size, self.encoder_seq_length]) | |
decoder_input_values = floats_tensor([self.batch_size, self.decoder_seq_length, self.num_mel_bins], scale=1.0) | |
decoder_attention_mask = random_attention_mask([self.batch_size, self.decoder_seq_length]) | |
config = self.get_config() | |
inputs_dict = prepare_inputs_dict( | |
config, | |
input_ids=input_ids, | |
decoder_input_values=decoder_input_values, | |
attention_mask=attention_mask, | |
decoder_attention_mask=decoder_attention_mask, | |
) | |
return config, inputs_dict | |
def prepare_config_and_inputs_for_common(self): | |
config, inputs_dict = self.prepare_config_and_inputs() | |
return config, inputs_dict | |
def get_config(self): | |
return SpeechT5Config( | |
hidden_size=self.hidden_size, | |
encoder_layers=self.num_hidden_layers, | |
decoder_layers=self.num_hidden_layers, | |
encoder_attention_heads=self.num_attention_heads, | |
decoder_attention_heads=self.num_attention_heads, | |
encoder_ffn_dim=self.intermediate_size, | |
decoder_ffn_dim=self.intermediate_size, | |
vocab_size=self.vocab_size, | |
num_mel_bins=self.num_mel_bins, | |
reduction_factor=self.reduction_factor, | |
) | |
def create_and_check_model_forward(self, config, inputs_dict): | |
model = SpeechT5ForTextToSpeech(config=config).to(torch_device).eval() | |
input_ids = inputs_dict["input_ids"] | |
attention_mask = inputs_dict["attention_mask"] | |
decoder_input_values = inputs_dict["decoder_input_values"] | |
result = model(input_ids, attention_mask=attention_mask, decoder_input_values=decoder_input_values) | |
self.parent.assertEqual( | |
result.spectrogram.shape, | |
(self.batch_size, self.decoder_seq_length * self.reduction_factor, self.num_mel_bins), | |
) | |
class SpeechT5ForTextToSpeechTest(ModelTesterMixin, unittest.TestCase): | |
all_model_classes = (SpeechT5ForTextToSpeech,) if is_torch_available() else () | |
all_generative_model_classes = (SpeechT5ForTextToSpeech,) if is_torch_available() else () | |
is_encoder_decoder = True | |
test_pruning = False | |
test_headmasking = False | |
input_name = "input_ids" | |
def setUp(self): | |
self.model_tester = SpeechT5ForTextToSpeechTester(self) | |
self.config_tester = ConfigTester(self, config_class=SpeechT5Config, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_save_load_strict(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname) | |
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) | |
self.assertEqual(info["missing_keys"], []) | |
def test_model_forward(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model_forward(*config_and_inputs) | |
# skipped because there is always dropout in SpeechT5SpeechDecoderPrenet | |
def test_decoder_model_past_with_large_inputs(self): | |
pass | |
# skipped because there is always dropout in SpeechT5SpeechDecoderPrenet | |
def test_determinism(self): | |
pass | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = [ | |
"input_ids", | |
"attention_mask", | |
"decoder_input_values", | |
"decoder_attention_mask", | |
] | |
expected_arg_names.extend( | |
["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"] | |
if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names | |
else ["encoder_outputs"] | |
) | |
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) | |
def test_initialization(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
configs_no_init = _config_zero_init(config) | |
for model_class in self.all_model_classes: | |
model = model_class(config=configs_no_init) | |
for name, param in model.named_parameters(): | |
uniform_init_parms = [ | |
"conv.weight", | |
] | |
if param.requires_grad: | |
if any([x in name for x in uniform_init_parms]): | |
self.assertTrue( | |
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
else: | |
self.assertIn( | |
((param.data.mean() * 1e9).round() / 1e9).item(), | |
[0.0, 1.0], | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
# this model has no inputs_embeds | |
def test_inputs_embeds(self): | |
pass | |
# skipped because there is always dropout in SpeechT5SpeechDecoderPrenet | |
def test_model_outputs_equivalence(self): | |
pass | |
# skipped because there is always dropout in SpeechT5SpeechDecoderPrenet | |
def test_save_load(self): | |
pass | |
def test_retain_grad_hidden_states_attentions(self): | |
# decoder cannot keep gradients | |
pass | |
def test_torchscript_output_attentions(self): | |
# disabled because this model doesn't have decoder_input_ids | |
pass | |
def test_torchscript_output_hidden_state(self): | |
# disabled because this model doesn't have decoder_input_ids | |
pass | |
def test_torchscript_simple(self): | |
# disabled because this model doesn't have decoder_input_ids | |
pass | |
# training is not supported yet | |
def test_training(self): | |
pass | |
def test_training_gradient_checkpointing(self): | |
pass | |
# overwrite from test_modeling_common | |
def _mock_init_weights(self, module): | |
if hasattr(module, "weight") and module.weight is not None: | |
module.weight.data.fill_(3) | |
if hasattr(module, "weight_g") and module.weight_g is not None: | |
module.weight_g.data.fill_(3) | |
if hasattr(module, "weight_v") and module.weight_v is not None: | |
module.weight_v.data.fill_(3) | |
if hasattr(module, "bias") and module.bias is not None: | |
module.bias.data.fill_(3) | |
class SpeechT5ForTextToSpeechIntegrationTests(unittest.TestCase): | |
def default_processor(self): | |
return SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") | |
def test_generation(self): | |
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") | |
model.to(torch_device) | |
processor = self.default_processor | |
input_text = "mister quilter is the apostle of the middle classes and we are glad to welcome his gospel" | |
input_ids = processor(text=input_text, return_tensors="pt").input_ids.to(torch_device) | |
generated_speech = model.generate_speech(input_ids) | |
self.assertEqual(generated_speech.shape, (1800, model.config.num_mel_bins)) | |
class SpeechT5ForSpeechToSpeechTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
encoder_seq_length=1024, # speech is longer | |
decoder_seq_length=1024, | |
is_training=False, | |
hidden_size=24, | |
num_hidden_layers=4, | |
num_attention_heads=2, | |
intermediate_size=4, | |
conv_dim=(32, 32, 32), | |
conv_stride=(4, 4, 4), | |
conv_kernel=(8, 8, 8), | |
conv_bias=False, | |
num_conv_pos_embeddings=16, | |
num_conv_pos_embedding_groups=2, | |
vocab_size=81, | |
num_mel_bins=20, | |
reduction_factor=2, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.encoder_seq_length = encoder_seq_length | |
self.decoder_seq_length = decoder_seq_length | |
self.is_training = is_training | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.conv_dim = conv_dim | |
self.conv_stride = conv_stride | |
self.conv_kernel = conv_kernel | |
self.conv_bias = conv_bias | |
self.num_conv_pos_embeddings = num_conv_pos_embeddings | |
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups | |
self.vocab_size = vocab_size | |
self.num_mel_bins = num_mel_bins | |
self.reduction_factor = reduction_factor | |
def prepare_config_and_inputs(self): | |
input_values = floats_tensor([self.batch_size, self.encoder_seq_length], scale=1.0) | |
attention_mask = random_attention_mask([self.batch_size, self.encoder_seq_length]) | |
decoder_input_values = floats_tensor([self.batch_size, self.decoder_seq_length, self.num_mel_bins], scale=1.0) | |
decoder_attention_mask = random_attention_mask([self.batch_size, self.decoder_seq_length]) | |
config = self.get_config() | |
inputs_dict = prepare_inputs_dict( | |
config, | |
input_values=input_values, | |
decoder_input_values=decoder_input_values, | |
attention_mask=attention_mask, | |
decoder_attention_mask=decoder_attention_mask, | |
) | |
return config, inputs_dict | |
def prepare_config_and_inputs_for_common(self): | |
config, inputs_dict = self.prepare_config_and_inputs() | |
return config, inputs_dict | |
def get_config(self): | |
return SpeechT5Config( | |
hidden_size=self.hidden_size, | |
encoder_layers=self.num_hidden_layers, | |
decoder_layers=self.num_hidden_layers, | |
encoder_attention_heads=self.num_attention_heads, | |
decoder_attention_heads=self.num_attention_heads, | |
encoder_ffn_dim=self.intermediate_size, | |
decoder_ffn_dim=self.intermediate_size, | |
conv_dim=self.conv_dim, | |
conv_stride=self.conv_stride, | |
conv_kernel=self.conv_kernel, | |
conv_bias=self.conv_bias, | |
num_conv_pos_embeddings=self.num_conv_pos_embeddings, | |
num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups, | |
vocab_size=self.vocab_size, | |
num_mel_bins=self.num_mel_bins, | |
reduction_factor=self.reduction_factor, | |
) | |
def create_and_check_model_forward(self, config, inputs_dict): | |
model = SpeechT5ForSpeechToSpeech(config=config).to(torch_device).eval() | |
input_values = inputs_dict["input_values"] | |
attention_mask = inputs_dict["attention_mask"] | |
decoder_input_values = inputs_dict["decoder_input_values"] | |
result = model(input_values, attention_mask=attention_mask, decoder_input_values=decoder_input_values) | |
self.parent.assertEqual( | |
result.spectrogram.shape, | |
(self.batch_size, self.decoder_seq_length * self.reduction_factor, self.num_mel_bins), | |
) | |
class SpeechT5ForSpeechToSpeechTest(ModelTesterMixin, unittest.TestCase): | |
all_model_classes = (SpeechT5ForSpeechToSpeech,) if is_torch_available() else () | |
all_generative_model_classes = (SpeechT5ForSpeechToSpeech,) if is_torch_available() else () | |
is_encoder_decoder = True | |
test_pruning = False | |
test_headmasking = False | |
test_resize_embeddings = False | |
input_name = "input_values" | |
def setUp(self): | |
self.model_tester = SpeechT5ForSpeechToSpeechTester(self) | |
self.config_tester = ConfigTester(self, config_class=SpeechT5Config, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_save_load_strict(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname) | |
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) | |
self.assertEqual(info["missing_keys"], []) | |
def test_model_forward(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model_forward(*config_and_inputs) | |
# skipped because there is always dropout in SpeechT5SpeechDecoderPrenet | |
def test_decoder_model_past_with_large_inputs(self): | |
pass | |
# skipped because there is always dropout in SpeechT5SpeechDecoderPrenet | |
def test_determinism(self): | |
pass | |
def test_attention_outputs(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.return_dict = True | |
seq_len = getattr(self.model_tester, "seq_length", None) | |
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) | |
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) | |
decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) | |
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) | |
for model_class in self.all_model_classes: | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = False | |
config.return_dict = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
subsampled_encoder_seq_length = model.speecht5.encoder.prenet._get_feat_extract_output_lengths( | |
encoder_seq_length | |
) | |
subsampled_encoder_key_length = model.speecht5.encoder.prenet._get_feat_extract_output_lengths( | |
encoder_key_length | |
) | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
# check that output_attentions also work using config | |
del inputs_dict["output_attentions"] | |
config.output_attentions = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length], | |
) | |
out_len = len(outputs) | |
correct_outlen = 5 | |
# loss is at first position | |
if "labels" in inputs_dict: | |
correct_outlen += 1 # loss is added to beginning | |
if "past_key_values" in outputs: | |
correct_outlen += 1 # past_key_values have been returned | |
self.assertEqual(out_len, correct_outlen) | |
# decoder attentions | |
decoder_attentions = outputs.decoder_attentions | |
self.assertIsInstance(decoder_attentions, (list, tuple)) | |
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(decoder_attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], | |
) | |
# cross attentions | |
cross_attentions = outputs.cross_attentions | |
self.assertIsInstance(cross_attentions, (list, tuple)) | |
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(cross_attentions[0].shape[-3:]), | |
[ | |
self.model_tester.num_attention_heads, | |
decoder_seq_length, | |
subsampled_encoder_key_length, | |
], | |
) | |
# Check attention is always last and order is fine | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
added_hidden_states = 2 | |
self.assertEqual(out_len + added_hidden_states, len(outputs)) | |
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions | |
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(self_attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length], | |
) | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = [ | |
"input_values", | |
"attention_mask", | |
"decoder_input_values", | |
"decoder_attention_mask", | |
] | |
expected_arg_names.extend( | |
["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"] | |
if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names | |
else ["encoder_outputs"] | |
) | |
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) | |
def test_hidden_states_output(self): | |
def check_hidden_states_output(inputs_dict, config, model_class): | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states | |
expected_num_layers = getattr( | |
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 | |
) | |
self.assertEqual(len(hidden_states), expected_num_layers) | |
if hasattr(self.model_tester, "encoder_seq_length"): | |
seq_length = self.model_tester.encoder_seq_length | |
else: | |
seq_length = self.model_tester.seq_length | |
subsampled_seq_length = model.speecht5.encoder.prenet._get_feat_extract_output_lengths(seq_length) | |
self.assertListEqual( | |
list(hidden_states[0].shape[-2:]), | |
[subsampled_seq_length, self.model_tester.hidden_size], | |
) | |
if config.is_encoder_decoder: | |
hidden_states = outputs.decoder_hidden_states | |
self.assertIsInstance(hidden_states, (list, tuple)) | |
self.assertEqual(len(hidden_states), expected_num_layers) | |
seq_len = getattr(self.model_tester, "seq_length", None) | |
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) | |
self.assertListEqual( | |
list(hidden_states[0].shape[-2:]), | |
[decoder_seq_length, self.model_tester.hidden_size], | |
) | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
inputs_dict["output_hidden_states"] = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
# check that output_hidden_states also work using config | |
del inputs_dict["output_hidden_states"] | |
config.output_hidden_states = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
def test_initialization(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
configs_no_init = _config_zero_init(config) | |
for model_class in self.all_model_classes: | |
model = model_class(config=configs_no_init) | |
for name, param in model.named_parameters(): | |
uniform_init_parms = [ | |
"conv.weight", | |
"masked_spec_embed", | |
"feature_projection.projection.weight", | |
"feature_projection.projection.bias", | |
] | |
if param.requires_grad: | |
if any([x in name for x in uniform_init_parms]): | |
self.assertTrue( | |
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
else: | |
self.assertIn( | |
((param.data.mean() * 1e9).round() / 1e9).item(), | |
[0.0, 1.0], | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
# this model has no inputs_embeds | |
def test_inputs_embeds(self): | |
pass | |
# this model has no input embeddings | |
def test_model_common_attributes(self): | |
pass | |
# skipped because there is always dropout in SpeechT5SpeechDecoderPrenet | |
def test_model_outputs_equivalence(self): | |
pass | |
def test_retain_grad_hidden_states_attentions(self): | |
# decoder cannot keep gradients | |
pass | |
# skipped because there is always dropout in SpeechT5SpeechDecoderPrenet | |
def test_save_load(self): | |
pass | |
def test_torchscript_output_attentions(self): | |
# disabled because this model doesn't have decoder_input_ids | |
pass | |
def test_torchscript_output_hidden_state(self): | |
# disabled because this model doesn't have decoder_input_ids | |
pass | |
def test_torchscript_simple(self): | |
# disabled because this model doesn't have decoder_input_ids | |
pass | |
# training is not supported yet | |
def test_training(self): | |
pass | |
def test_training_gradient_checkpointing(self): | |
pass | |
# overwrite from test_modeling_common | |
def _mock_init_weights(self, module): | |
if hasattr(module, "weight") and module.weight is not None: | |
module.weight.data.fill_(3) | |
if hasattr(module, "weight_g") and module.weight_g is not None: | |
module.weight_g.data.fill_(3) | |
if hasattr(module, "weight_v") and module.weight_v is not None: | |
module.weight_v.data.fill_(3) | |
if hasattr(module, "bias") and module.bias is not None: | |
module.bias.data.fill_(3) | |
if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None: | |
module.masked_spec_embed.data.fill_(3) | |
class SpeechT5ForSpeechToSpeechIntegrationTests(unittest.TestCase): | |
def default_processor(self): | |
return SpeechT5Processor.from_pretrained("microsoft/speecht5_vc") | |
def _load_datasamples(self, num_samples): | |
from datasets import load_dataset | |
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
# automatic decoding with librispeech | |
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] | |
return [x["array"] for x in speech_samples] | |
def test_generation_librispeech(self): | |
model = SpeechT5ForSpeechToSpeech.from_pretrained("microsoft/speecht5_vc") | |
model.to(torch_device) | |
processor = self.default_processor | |
input_speech = self._load_datasamples(1) | |
input_values = processor(audio=input_speech, return_tensors="pt").input_values.to(torch_device) | |
speaker_embeddings = torch.zeros((1, 512), device=torch_device) | |
generated_speech = model.generate_speech(input_values, speaker_embeddings=speaker_embeddings) | |
self.assertEqual(generated_speech.shape[1], model.config.num_mel_bins) | |
self.assertGreaterEqual(generated_speech.shape[0], 300) | |
self.assertLessEqual(generated_speech.shape[0], 310) | |
class SpeechT5HifiGanTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=False, | |
num_mel_bins=20, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.num_mel_bins = num_mel_bins | |
def prepare_config_and_inputs(self): | |
input_values = floats_tensor([self.seq_length, self.num_mel_bins], scale=1.0) | |
config = self.get_config() | |
return config, input_values | |
def get_config(self): | |
return SpeechT5HifiGanConfig( | |
model_in_dim=self.num_mel_bins, | |
) | |
def create_and_check_model(self, config, input_values): | |
model = SpeechT5HifiGan(config=config).to(torch_device).eval() | |
result = model(input_values) | |
self.parent.assertEqual(result.shape, (self.seq_length * 256,)) | |
def prepare_config_and_inputs_for_common(self): | |
config, input_values = self.prepare_config_and_inputs() | |
inputs_dict = {"spectrogram": input_values} | |
return config, inputs_dict | |
class SpeechT5HifiGanTest(ModelTesterMixin, unittest.TestCase): | |
all_model_classes = (SpeechT5HifiGan,) if is_torch_available() else () | |
test_torchscript = False | |
test_pruning = False | |
test_resize_embeddings = False | |
test_resize_position_embeddings = False | |
test_head_masking = False | |
test_mismatched_shapes = False | |
test_missing_keys = False | |
test_model_parallel = False | |
is_encoder_decoder = False | |
has_attentions = False | |
input_name = "spectrogram" | |
def setUp(self): | |
self.model_tester = SpeechT5HifiGanTester(self) | |
self.config_tester = ConfigTester(self, config_class=SpeechT5HifiGanConfig) | |
def test_config(self): | |
self.config_tester.create_and_test_config_to_json_string() | |
self.config_tester.create_and_test_config_to_json_file() | |
self.config_tester.create_and_test_config_from_and_save_pretrained() | |
self.config_tester.create_and_test_config_from_and_save_pretrained_subfolder() | |
self.config_tester.create_and_test_config_with_num_labels() | |
self.config_tester.check_config_can_be_init_without_params() | |
self.config_tester.check_config_arguments_init() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = [ | |
"spectrogram", | |
] | |
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) | |
# this model does not output hidden states | |
def test_hidden_states_output(self): | |
pass | |
# skip | |
def test_initialization(self): | |
pass | |
# this model has no inputs_embeds | |
def test_inputs_embeds(self): | |
pass | |
# this model has no input embeddings | |
def test_model_common_attributes(self): | |
pass | |
# skip as this model doesn't support all arguments tested | |
def test_model_outputs_equivalence(self): | |
pass | |
# this model does not output hidden states | |
def test_retain_grad_hidden_states_attentions(self): | |
pass | |
# skip because it fails on automapping of SpeechT5HifiGanConfig | |
def test_save_load_fast_init_from_base(self): | |
pass | |
# skip because it fails on automapping of SpeechT5HifiGanConfig | |
def test_save_load_fast_init_to_base(self): | |
pass | |
def test_batched_inputs_outputs(self): | |
config, inputs = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
batched_inputs = inputs["spectrogram"].unsqueeze(0).repeat(2, 1, 1) | |
with torch.no_grad(): | |
batched_outputs = model(batched_inputs.to(torch_device)) | |
self.assertEqual( | |
batched_inputs.shape[0], batched_outputs.shape[0], msg="Got different batch dims for input and output" | |
) | |
def test_unbatched_inputs_outputs(self): | |
config, inputs = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(inputs["spectrogram"].to(torch_device)) | |
self.assertTrue(outputs.dim() == 1, msg="Got un-batched inputs but batched output") | |