Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import RobertaConfig, is_tf_available | |
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_tf_available(): | |
import numpy | |
import tensorflow as tf | |
from transformers.models.roberta.modeling_tf_roberta import ( | |
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFRobertaForCausalLM, | |
TFRobertaForMaskedLM, | |
TFRobertaForMultipleChoice, | |
TFRobertaForQuestionAnswering, | |
TFRobertaForSequenceClassification, | |
TFRobertaForTokenClassification, | |
TFRobertaModel, | |
) | |
class TFRobertaModelTester: | |
def __init__( | |
self, | |
parent, | |
): | |
self.parent = parent | |
self.batch_size = 13 | |
self.seq_length = 7 | |
self.is_training = True | |
self.use_input_mask = True | |
self.use_token_type_ids = True | |
self.use_labels = True | |
self.vocab_size = 99 | |
self.hidden_size = 32 | |
self.num_hidden_layers = 5 | |
self.num_attention_heads = 4 | |
self.intermediate_size = 37 | |
self.hidden_act = "gelu" | |
self.hidden_dropout_prob = 0.1 | |
self.attention_probs_dropout_prob = 0.1 | |
self.max_position_embeddings = 512 | |
self.type_vocab_size = 16 | |
self.type_sequence_label_size = 2 | |
self.initializer_range = 0.02 | |
self.num_labels = 3 | |
self.num_choices = 4 | |
self.scope = None | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
sequence_labels = None | |
token_labels = None | |
choice_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = RobertaConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
initializer_range=self.initializer_range, | |
) | |
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
def prepare_config_and_inputs_for_decoder(self): | |
( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = self.prepare_config_and_inputs() | |
config.is_decoder = True | |
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) | |
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) | |
return ( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) | |
def create_and_check_model( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = TFRobertaModel(config=config) | |
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
result = model(inputs) | |
inputs = [input_ids, input_mask] | |
result = model(inputs) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
def create_and_check_causal_lm_base_model( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.is_decoder = True | |
model = TFRobertaModel(config=config) | |
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
result = model(inputs) | |
inputs = [input_ids, input_mask] | |
result = model(inputs) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
def create_and_check_model_as_decoder( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
): | |
config.add_cross_attention = True | |
model = TFRobertaModel(config=config) | |
inputs = { | |
"input_ids": input_ids, | |
"attention_mask": input_mask, | |
"token_type_ids": token_type_ids, | |
"encoder_hidden_states": encoder_hidden_states, | |
"encoder_attention_mask": encoder_attention_mask, | |
} | |
result = model(inputs) | |
inputs = [input_ids, input_mask] | |
result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states) | |
# Also check the case where encoder outputs are not passed | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
def create_and_check_causal_lm_model( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.is_decoder = True | |
model = TFRobertaForCausalLM(config=config) | |
inputs = { | |
"input_ids": input_ids, | |
"attention_mask": input_mask, | |
"token_type_ids": token_type_ids, | |
} | |
prediction_scores = model(inputs)["logits"] | |
self.parent.assertListEqual( | |
list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size] | |
) | |
def create_and_check_causal_lm_model_as_decoder( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
): | |
config.add_cross_attention = True | |
model = TFRobertaForCausalLM(config=config) | |
inputs = { | |
"input_ids": input_ids, | |
"attention_mask": input_mask, | |
"token_type_ids": token_type_ids, | |
"encoder_hidden_states": encoder_hidden_states, | |
"encoder_attention_mask": encoder_attention_mask, | |
} | |
result = model(inputs) | |
inputs = [input_ids, input_mask] | |
result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states) | |
prediction_scores = result["logits"] | |
self.parent.assertListEqual( | |
list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size] | |
) | |
def create_and_check_causal_lm_model_past( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
): | |
config.is_decoder = True | |
model = TFRobertaForCausalLM(config=config) | |
# special to `RobertaEmbeddings` in `Roberta`: | |
# - its `padding_idx` and its effect on `position_ids` | |
# (TFRobertaEmbeddings.create_position_ids_from_input_ids) | |
# - `1` here is `TFRobertaEmbeddings.padding_idx` | |
input_ids = tf.where(input_ids == 1, 2, input_ids) | |
# first forward pass | |
outputs = model(input_ids, use_cache=True) | |
outputs_use_cache_conf = model(input_ids) | |
outputs_no_past = model(input_ids, use_cache=False) | |
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) | |
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) | |
past_key_values = outputs.past_key_values | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
# append to next input_ids and attn_mask | |
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) | |
output_from_no_past = model(next_input_ids, output_hidden_states=True).hidden_states[0] | |
output_from_past = model( | |
next_tokens, past_key_values=past_key_values, output_hidden_states=True | |
).hidden_states[0] | |
# select random slice | |
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) | |
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] | |
output_from_past_slice = output_from_past[:, 0, random_slice_idx] | |
# test that outputs are equal for slice | |
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6) | |
def create_and_check_causal_lm_model_past_with_attn_mask( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
): | |
config.is_decoder = True | |
model = TFRobertaForCausalLM(config=config) | |
# special to `RobertaEmbeddings` in `Roberta`: | |
# - its `padding_idx` and its effect on `position_ids` | |
# (TFRobertaEmbeddings.create_position_ids_from_input_ids) | |
# - `1` here is `TFRobertaEmbeddings.padding_idx` | |
# avoid `padding_idx` in the past | |
input_ids = tf.where(input_ids == 1, 2, input_ids) | |
# create attention mask | |
half_seq_length = self.seq_length // 2 | |
attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32) | |
attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32) | |
attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1) | |
# first forward pass | |
outputs = model(input_ids, attention_mask=attn_mask, use_cache=True) | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
past_key_values = outputs.past_key_values | |
# change a random masked slice from input_ids | |
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1 | |
random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size) | |
vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change) | |
condition = tf.transpose( | |
tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size)) | |
) | |
input_ids = tf.where(condition, random_other_next_tokens, input_ids) | |
# avoid `padding_idx` in the past | |
input_ids = tf.where(input_ids == 1, 2, input_ids) | |
# append to next input_ids and | |
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) | |
attn_mask = tf.concat( | |
[attn_mask, tf.ones((attn_mask.shape[0], 1), dtype=tf.int32)], | |
axis=1, | |
) | |
output_from_no_past = model( | |
next_input_ids, | |
attention_mask=attn_mask, | |
output_hidden_states=True, | |
).hidden_states[0] | |
output_from_past = model( | |
next_tokens, past_key_values=past_key_values, attention_mask=attn_mask, output_hidden_states=True | |
).hidden_states[0] | |
# select random slice | |
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) | |
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] | |
output_from_past_slice = output_from_past[:, 0, random_slice_idx] | |
# test that outputs are equal for slice | |
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6) | |
def create_and_check_causal_lm_model_past_large_inputs( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
): | |
config.is_decoder = True | |
model = TFRobertaForCausalLM(config=config) | |
# special to `RobertaEmbeddings` in `Roberta`: | |
# - its `padding_idx` and its effect on `position_ids` | |
# (TFRobertaEmbeddings.create_position_ids_from_input_ids) | |
# - `1` here is `TFRobertaEmbeddings.padding_idx` | |
# avoid `padding_idx` in the past | |
input_ids = tf.where(input_ids == 1, 2, input_ids) | |
input_ids = input_ids[:1, :] | |
input_mask = input_mask[:1, :] | |
self.batch_size = 1 | |
# first forward pass | |
outputs = model(input_ids, attention_mask=input_mask, use_cache=True) | |
past_key_values = outputs.past_key_values | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) | |
next_attn_mask = ids_tensor((self.batch_size, 3), 2) | |
# append to next input_ids and | |
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) | |
next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1) | |
output_from_no_past = model( | |
next_input_ids, | |
attention_mask=next_attention_mask, | |
output_hidden_states=True, | |
).hidden_states[0] | |
output_from_past = model( | |
next_tokens, | |
attention_mask=next_attention_mask, | |
past_key_values=past_key_values, | |
output_hidden_states=True, | |
).hidden_states[0] | |
self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) | |
# select random slice | |
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) | |
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] | |
output_from_past_slice = output_from_past[:, :, random_slice_idx] | |
# test that outputs are equal for slice | |
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) | |
def create_and_check_decoder_model_past_large_inputs( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
): | |
config.add_cross_attention = True | |
model = TFRobertaForCausalLM(config=config) | |
# special to `RobertaEmbeddings` in `Roberta`: | |
# - its `padding_idx` and its effect on `position_ids` | |
# (TFRobertaEmbeddings.create_position_ids_from_input_ids) | |
# - `1` here is `TFRobertaEmbeddings.padding_idx` | |
# avoid `padding_idx` in the past | |
input_ids = tf.where(input_ids == 1, 2, input_ids) | |
input_ids = input_ids[:1, :] | |
input_mask = input_mask[:1, :] | |
encoder_hidden_states = encoder_hidden_states[:1, :, :] | |
encoder_attention_mask = encoder_attention_mask[:1, :] | |
self.batch_size = 1 | |
# first forward pass | |
outputs = model( | |
input_ids, | |
attention_mask=input_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
use_cache=True, | |
) | |
past_key_values = outputs.past_key_values | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) | |
next_attn_mask = ids_tensor((self.batch_size, 3), 2) | |
# append to next input_ids and | |
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) | |
next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1) | |
output_from_no_past = model( | |
next_input_ids, | |
attention_mask=next_attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
output_hidden_states=True, | |
).hidden_states[0] | |
output_from_past = model( | |
next_tokens, | |
attention_mask=next_attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
past_key_values=past_key_values, | |
output_hidden_states=True, | |
).hidden_states[0] | |
self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) | |
# select random slice | |
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) | |
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] | |
output_from_past_slice = output_from_past[:, :, random_slice_idx] | |
# test that outputs are equal for slice | |
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) | |
def create_and_check_for_masked_lm( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = TFRobertaForMaskedLM(config=config) | |
result = model([input_ids, input_mask, token_type_ids]) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def create_and_check_for_token_classification( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.num_labels = self.num_labels | |
model = TFRobertaForTokenClassification(config=config) | |
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
result = model(inputs) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
def create_and_check_for_question_answering( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = TFRobertaForQuestionAnswering(config=config) | |
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
result = model(inputs) | |
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
def create_and_check_for_multiple_choice( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.num_choices = self.num_choices | |
model = TFRobertaForMultipleChoice(config=config) | |
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) | |
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) | |
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) | |
inputs = { | |
"input_ids": multiple_choice_inputs_ids, | |
"attention_mask": multiple_choice_input_mask, | |
"token_type_ids": multiple_choice_token_type_ids, | |
} | |
result = model(inputs) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} | |
return config, inputs_dict | |
class TFRobertaModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
( | |
TFRobertaModel, | |
TFRobertaForCausalLM, | |
TFRobertaForMaskedLM, | |
TFRobertaForSequenceClassification, | |
TFRobertaForTokenClassification, | |
TFRobertaForQuestionAnswering, | |
) | |
if is_tf_available() | |
else () | |
) | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": TFRobertaModel, | |
"fill-mask": TFRobertaForMaskedLM, | |
"question-answering": TFRobertaForQuestionAnswering, | |
"text-classification": TFRobertaForSequenceClassification, | |
"text-generation": TFRobertaForCausalLM, | |
"token-classification": TFRobertaForTokenClassification, | |
"zero-shot": TFRobertaForSequenceClassification, | |
} | |
if is_tf_available() | |
else {} | |
) | |
test_head_masking = False | |
test_onnx = False | |
def setUp(self): | |
self.model_tester = TFRobertaModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
"""Test the base model""" | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_causal_lm_base_model(self): | |
"""Test the base model of the causal LM model | |
is_deocder=True, no cross_attention, no encoder outputs | |
""" | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_causal_lm_base_model(*config_and_inputs) | |
def test_model_as_decoder(self): | |
"""Test the base model as a decoder (of an encoder-decoder architecture) | |
is_deocder=True + cross_attention + pass encoder outputs | |
""" | |
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() | |
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) | |
def test_for_masked_lm(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) | |
def test_for_causal_lm(self): | |
"""Test the causal LM model""" | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_causal_lm_model(*config_and_inputs) | |
def test_causal_lm_model_as_decoder(self): | |
"""Test the causal LM model as a decoder""" | |
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() | |
self.model_tester.create_and_check_causal_lm_model_as_decoder(*config_and_inputs) | |
def test_causal_lm_model_past(self): | |
"""Test causal LM model with `past_key_values`""" | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_causal_lm_model_past(*config_and_inputs) | |
def test_causal_lm_model_past_with_attn_mask(self): | |
"""Test the causal LM model with `past_key_values` and `attention_mask`""" | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_causal_lm_model_past_with_attn_mask(*config_and_inputs) | |
def test_causal_lm_model_past_with_large_inputs(self): | |
"""Test the causal LM model with `past_key_values` and a longer decoder sequence length""" | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_causal_lm_model_past_large_inputs(*config_and_inputs) | |
def test_decoder_model_past_with_large_inputs(self): | |
"""Similar to `test_causal_lm_model_past_with_large_inputs` but with cross-attention""" | |
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() | |
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) | |
def test_for_token_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_token_classification(*config_and_inputs) | |
def test_for_question_answering(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_question_answering(*config_and_inputs) | |
def test_for_multiple_choice(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = TFRobertaModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class TFRobertaModelIntegrationTest(unittest.TestCase): | |
def test_inference_masked_lm(self): | |
model = TFRobertaForMaskedLM.from_pretrained("roberta-base") | |
input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) | |
output = model(input_ids)[0] | |
expected_shape = [1, 11, 50265] | |
self.assertEqual(list(output.numpy().shape), expected_shape) | |
# compare the actual values for a slice. | |
expected_slice = tf.constant( | |
[[[33.8802, -4.3103, 22.7761], [4.6539, -2.8098, 13.6253], [1.8228, -3.6898, 8.8600]]] | |
) | |
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4)) | |
def test_inference_no_head(self): | |
model = TFRobertaModel.from_pretrained("roberta-base") | |
input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) | |
output = model(input_ids)[0] | |
# compare the actual values for a slice. | |
expected_slice = tf.constant( | |
[[[-0.0231, 0.0782, 0.0074], [-0.1854, 0.0540, -0.0175], [0.0548, 0.0799, 0.1687]]] | |
) | |
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4)) | |
def test_inference_classification_head(self): | |
model = TFRobertaForSequenceClassification.from_pretrained("roberta-large-mnli") | |
input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) | |
output = model(input_ids)[0] | |
expected_shape = [1, 3] | |
self.assertEqual(list(output.numpy().shape), expected_shape) | |
expected_tensor = tf.constant([[-0.9469, 0.3913, 0.5118]]) | |
self.assertTrue(numpy.allclose(output.numpy(), expected_tensor.numpy(), atol=1e-4)) | |