Spaces:
Runtime error
Runtime error
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
import unittest | |
from transformers import ResNetConfig, is_flax_available | |
from transformers.testing_utils import require_flax, slow | |
from transformers.utils import cached_property, is_vision_available | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor | |
if is_flax_available(): | |
import jax | |
import jax.numpy as jnp | |
from transformers.models.resnet.modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel | |
if is_vision_available(): | |
from PIL import Image | |
from transformers import AutoFeatureExtractor | |
class FlaxResNetModelTester(unittest.TestCase): | |
def __init__( | |
self, | |
parent, | |
batch_size=3, | |
image_size=32, | |
num_channels=3, | |
embeddings_size=10, | |
hidden_sizes=[10, 20, 30, 40], | |
depths=[1, 1, 2, 1], | |
is_training=True, | |
use_labels=True, | |
hidden_act="relu", | |
num_labels=3, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.image_size = image_size | |
self.num_channels = num_channels | |
self.embeddings_size = embeddings_size | |
self.hidden_sizes = hidden_sizes | |
self.depths = depths | |
self.is_training = is_training | |
self.use_labels = use_labels | |
self.hidden_act = hidden_act | |
self.num_labels = num_labels | |
self.scope = scope | |
self.num_stages = len(hidden_sizes) | |
def prepare_config_and_inputs(self): | |
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
config = self.get_config() | |
return config, pixel_values | |
def get_config(self): | |
return ResNetConfig( | |
num_channels=self.num_channels, | |
embeddings_size=self.embeddings_size, | |
hidden_sizes=self.hidden_sizes, | |
depths=self.depths, | |
hidden_act=self.hidden_act, | |
num_labels=self.num_labels, | |
image_size=self.image_size, | |
) | |
def create_and_check_model(self, config, pixel_values): | |
model = FlaxResNetModel(config=config) | |
result = model(pixel_values) | |
# Output shape (b, c, h, w) | |
self.parent.assertEqual( | |
result.last_hidden_state.shape, | |
(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), | |
) | |
def create_and_check_for_image_classification(self, config, pixel_values): | |
config.num_labels = self.num_labels | |
model = FlaxResNetForImageClassification(config=config) | |
result = model(pixel_values) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, pixel_values = config_and_inputs | |
inputs_dict = {"pixel_values": pixel_values} | |
return config, inputs_dict | |
class FlaxResNetModelTest(FlaxModelTesterMixin, unittest.TestCase): | |
all_model_classes = (FlaxResNetModel, FlaxResNetForImageClassification) if is_flax_available() else () | |
is_encoder_decoder = False | |
test_head_masking = False | |
has_attentions = False | |
def setUp(self) -> None: | |
self.model_tester = FlaxResNetModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=ResNetConfig, has_text_modality=False) | |
def test_config(self): | |
self.create_and_test_config_common_properties() | |
self.config_tester.create_and_test_config_to_json_string() | |
self.config_tester.create_and_test_config_to_json_file() | |
self.config_tester.create_and_test_config_from_and_save_pretrained() | |
self.config_tester.create_and_test_config_with_num_labels() | |
self.config_tester.check_config_can_be_init_without_params() | |
self.config_tester.check_config_arguments_init() | |
def create_and_test_config_common_properties(self): | |
return | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_for_image_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_image_classification(*config_and_inputs) | |
def test_inputs_embeds(self): | |
pass | |
def test_model_common_attributes(self): | |
pass | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.__call__) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["pixel_values"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_hidden_states_output(self): | |
def check_hidden_states_output(inputs_dict, config, model_class): | |
model = model_class(config) | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states | |
expected_num_stages = self.model_tester.num_stages | |
self.assertEqual(len(hidden_states), expected_num_stages + 1) | |
def test_feed_forward_chunking(self): | |
pass | |
def test_jit_compilation(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
with self.subTest(model_class.__name__): | |
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
model = model_class(config) | |
def model_jitted(pixel_values, **kwargs): | |
return model(pixel_values=pixel_values, **kwargs) | |
with self.subTest("JIT Enabled"): | |
jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple() | |
with self.subTest("JIT Disabled"): | |
with jax.disable_jit(): | |
outputs = model_jitted(**prepared_inputs_dict).to_tuple() | |
self.assertEqual(len(outputs), len(jitted_outputs)) | |
for jitted_output, output in zip(jitted_outputs, outputs): | |
self.assertEqual(jitted_output.shape, output.shape) | |
# We will verify our results on an image of cute cats | |
def prepare_img(): | |
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
return image | |
class FlaxResNetModelIntegrationTest(unittest.TestCase): | |
def default_feature_extractor(self): | |
return AutoFeatureExtractor.from_pretrained("microsoft/resnet-50") if is_vision_available() else None | |
def test_inference_image_classification_head(self): | |
model = FlaxResNetForImageClassification.from_pretrained("microsoft/resnet-50") | |
feature_extractor = self.default_feature_extractor | |
image = prepare_img() | |
inputs = feature_extractor(images=image, return_tensors="np") | |
outputs = model(**inputs) | |
# verify the logits | |
expected_shape = (1, 1000) | |
self.assertEqual(outputs.logits.shape, expected_shape) | |
expected_slice = jnp.array([-11.1069, -9.7877, -8.3777]) | |
self.assertTrue(jnp.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) | |