Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022, The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch PLBART model. """ | |
import copy | |
import tempfile | |
import unittest | |
from transformers import PLBartConfig, is_torch_available | |
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device | |
from transformers.utils import cached_property | |
from ...generation.test_utils import GenerationTesterMixin | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, ids_tensor | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
AutoTokenizer, | |
PLBartForCausalLM, | |
PLBartForConditionalGeneration, | |
PLBartForSequenceClassification, | |
PLBartModel, | |
) | |
from transformers.models.plbart.modeling_plbart import PLBartDecoder, PLBartEncoder | |
def prepare_plbart_inputs_dict( | |
config, | |
input_ids, | |
decoder_input_ids, | |
attention_mask=None, | |
decoder_attention_mask=None, | |
head_mask=None, | |
decoder_head_mask=None, | |
cross_attn_head_mask=None, | |
): | |
if attention_mask is None: | |
attention_mask = input_ids.ne(config.pad_token_id) | |
if decoder_attention_mask is None: | |
decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) | |
if head_mask is None: | |
head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device) | |
if decoder_head_mask is None: | |
decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) | |
if cross_attn_head_mask is None: | |
cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) | |
return { | |
"input_ids": input_ids, | |
"decoder_input_ids": decoder_input_ids, | |
"attention_mask": attention_mask, | |
"decoder_attention_mask": attention_mask, | |
"head_mask": head_mask, | |
"decoder_head_mask": decoder_head_mask, | |
"cross_attn_head_mask": cross_attn_head_mask, | |
} | |
class PLBartModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=True, | |
use_labels=False, | |
vocab_size=99, | |
hidden_size=16, | |
num_hidden_layers=2, | |
num_attention_heads=4, | |
intermediate_size=4, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=100, | |
eos_token_id=2, | |
pad_token_id=1, | |
bos_token_id=0, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.eos_token_id = eos_token_id | |
self.pad_token_id = pad_token_id | |
self.bos_token_id = bos_token_id | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_ids = input_ids.clamp(3) | |
input_ids[:, -1] = self.eos_token_id # Eos Token | |
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
config = self.get_config() | |
inputs_dict = prepare_plbart_inputs_dict(config, input_ids, decoder_input_ids) | |
return config, inputs_dict | |
def get_config(self): | |
return PLBartConfig( | |
vocab_size=self.vocab_size, | |
d_model=self.hidden_size, | |
encoder_layers=self.num_hidden_layers, | |
decoder_layers=self.num_hidden_layers, | |
encoder_attention_heads=self.num_attention_heads, | |
decoder_attention_heads=self.num_attention_heads, | |
encoder_ffn_dim=self.intermediate_size, | |
decoder_ffn_dim=self.intermediate_size, | |
dropout=self.hidden_dropout_prob, | |
attention_dropout=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
eos_token_id=self.eos_token_id, | |
bos_token_id=self.bos_token_id, | |
pad_token_id=self.pad_token_id, | |
) | |
def prepare_config_and_inputs_for_common(self): | |
config, inputs_dict = self.prepare_config_and_inputs() | |
return config, inputs_dict | |
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): | |
model = PLBartModel(config=config).get_decoder().to(torch_device).eval() | |
input_ids = inputs_dict["input_ids"] | |
attention_mask = inputs_dict["attention_mask"] | |
head_mask = inputs_dict["head_mask"] | |
# first forward pass | |
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) | |
output, past_key_values = outputs.to_tuple() | |
# create hypothetical multiple next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) | |
next_attn_mask = ids_tensor((self.batch_size, 3), 2) | |
# append to next input_ids and | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) | |
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] | |
output_with_past_key_values = model( | |
next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values | |
) | |
output_from_past = output_with_past_key_values["last_hidden_state"] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() | |
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
def check_encoder_decoder_model_standalone(self, config, inputs_dict): | |
model = PLBartModel(config=config).to(torch_device).eval() | |
outputs = model(**inputs_dict) | |
encoder_last_hidden_state = outputs.encoder_last_hidden_state | |
last_hidden_state = outputs.last_hidden_state | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
encoder = model.get_encoder() | |
encoder.save_pretrained(tmpdirname) | |
encoder = PLBartEncoder.from_pretrained(tmpdirname).to(torch_device) | |
encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[ | |
0 | |
] | |
self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
decoder = model.get_decoder() | |
decoder.save_pretrained(tmpdirname) | |
decoder = PLBartDecoder.from_pretrained(tmpdirname).to(torch_device) | |
last_hidden_state_2 = decoder( | |
input_ids=inputs_dict["decoder_input_ids"], | |
attention_mask=inputs_dict["decoder_attention_mask"], | |
encoder_hidden_states=encoder_last_hidden_state, | |
encoder_attention_mask=inputs_dict["attention_mask"], | |
)[0] | |
self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) | |
class PLBartModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
(PLBartModel, PLBartForConditionalGeneration, PLBartForSequenceClassification) if is_torch_available() else () | |
) | |
all_generative_model_classes = (PLBartForConditionalGeneration,) if is_torch_available() else () | |
pipeline_model_mapping = ( | |
{ | |
"conversational": PLBartForConditionalGeneration, | |
"feature-extraction": PLBartModel, | |
"summarization": PLBartForConditionalGeneration, | |
"text-classification": PLBartForSequenceClassification, | |
"text-generation": PLBartForCausalLM, | |
"text2text-generation": PLBartForConditionalGeneration, | |
"translation": PLBartForConditionalGeneration, | |
"zero-shot": PLBartForSequenceClassification, | |
} | |
if is_torch_available() | |
else {} | |
) | |
is_encoder_decoder = True | |
fx_compatible = False # Fix me Michael | |
test_pruning = False | |
test_missing_keys = False | |
# TODO: Fix the failed tests | |
def is_pipeline_test_to_skip( | |
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name | |
): | |
if pipeline_test_casse_name == "TranslationPipelineTests": | |
# Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. | |
# `PLBartConfig` was never used in pipeline tests: cannot create a simple tokenizer. | |
return True | |
return False | |
def setUp(self): | |
self.model_tester = PLBartModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=PLBartConfig) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_save_load_strict(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname) | |
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) | |
self.assertEqual(info["missing_keys"], []) | |
def test_decoder_model_past_with_large_inputs(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) | |
def test_encoder_decoder_model_standalone(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() | |
self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) | |
# PLBartForSequenceClassification does not support inputs_embeds | |
def test_inputs_embeds(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in (PLBartModel, PLBartForConditionalGeneration): | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) | |
if not self.is_encoder_decoder: | |
input_ids = inputs["input_ids"] | |
del inputs["input_ids"] | |
else: | |
encoder_input_ids = inputs["input_ids"] | |
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) | |
del inputs["input_ids"] | |
inputs.pop("decoder_input_ids", None) | |
wte = model.get_input_embeddings() | |
if not self.is_encoder_decoder: | |
inputs["inputs_embeds"] = wte(input_ids) | |
else: | |
inputs["inputs_embeds"] = wte(encoder_input_ids) | |
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) | |
with torch.no_grad(): | |
model(**inputs)[0] | |
def test_generate_fp16(self): | |
config, input_dict = self.model_tester.prepare_config_and_inputs() | |
input_ids = input_dict["input_ids"] | |
attention_mask = input_ids.ne(1).to(torch_device) | |
model = PLBartForConditionalGeneration(config).eval().to(torch_device) | |
if torch_device == "cuda": | |
model.half() | |
model.generate(input_ids, attention_mask=attention_mask) | |
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) | |
def assert_tensors_close(a, b, atol=1e-12, prefix=""): | |
"""If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error.""" | |
if a is None and b is None: | |
return True | |
try: | |
if torch.allclose(a, b, atol=atol): | |
return True | |
raise | |
except Exception: | |
pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item() | |
if a.numel() > 100: | |
msg = f"tensor values are {pct_different:.1%} percent different." | |
else: | |
msg = f"{a} != {b}" | |
if prefix: | |
msg = prefix + ": " + msg | |
raise AssertionError(msg) | |
def _long_tensor(tok_lst): | |
return torch.tensor(tok_lst, dtype=torch.long, device=torch_device) | |
class AbstractSeq2SeqIntegrationTest(unittest.TestCase): | |
maxDiff = 1000 # longer string compare tracebacks | |
checkpoint_name = None | |
def setUpClass(cls): | |
cls.tokenizer = AutoTokenizer.from_pretrained(cls.checkpoint_name, use_fast=False) | |
return cls | |
def model(self): | |
"""Only load the model if needed.""" | |
model = PLBartForConditionalGeneration.from_pretrained(self.checkpoint_name).to(torch_device) | |
if "cuda" in torch_device: | |
model = model.half() | |
return model | |
class PLBartJavaCsIntegrationTest(AbstractSeq2SeqIntegrationTest): | |
checkpoint_name = "uclanlp/plbart-java-cs" | |
src_text = [ | |
"public int maximum(int a, int b, int c){return Math.max(a, Math.max(b, c));}", | |
"public int product(int a, int b, int c){return a*b*c;}", | |
] | |
tgt_text = [ | |
"public int maximum(int a, int b, int c){return Math.Max(", | |
"public int Product(int a, int b, int c){return a * b *", | |
] | |
def test_java_cs_generate_one(self): | |
batch = self.tokenizer( | |
["public int maximum(int a, int b, int c){return Math.max(a, Math.max(b, c));}"], return_tensors="pt" | |
) | |
batch = batch.to(torch_device) | |
translated_tokens = self.model.generate(**batch) | |
decoded = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True) | |
self.assertEqual(self.tgt_text[0], decoded[0]) | |
# self.assertEqual(self.tgt_text[1], decoded[1]) | |
def test_java_cs_generate_batch(self): | |
batch = self.tokenizer(self.src_text, return_tensors="pt", padding=True, truncation=True) | |
batch = batch.to(torch_device) | |
translated_tokens = self.model.generate(**batch) | |
decoded = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True) | |
assert self.tgt_text == decoded | |
def test_plbart_java_cs_config(self): | |
plbart_models = ["uclanlp/plbart-java-cs"] | |
expected = {"scale_embedding": True} | |
for name in plbart_models: | |
config = PLBartConfig.from_pretrained(name) | |
for k, v in expected.items(): | |
try: | |
self.assertEqual(v, getattr(config, k)) | |
except AssertionError as e: | |
e.args += (name, k) | |
raise | |
def test_plbart_fast_forward(self): | |
config = PLBartConfig( | |
vocab_size=99, | |
d_model=24, | |
encoder_layers=2, | |
decoder_layers=2, | |
encoder_attention_heads=2, | |
decoder_attention_heads=2, | |
encoder_ffn_dim=32, | |
decoder_ffn_dim=32, | |
max_position_embeddings=48, | |
add_final_layer_norm=True, | |
) | |
lm_model = PLBartForConditionalGeneration(config).to(torch_device) | |
context = torch.tensor( | |
[[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], device=torch_device, dtype=torch.long | |
) | |
summary = torch.tensor([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], device=torch_device, dtype=torch.long) | |
result = lm_model(input_ids=context, decoder_input_ids=summary, labels=summary) | |
expected_shape = (*summary.shape, config.vocab_size) | |
self.assertEqual(result.logits.shape, expected_shape) | |
class PLBartBaseIntegrationTest(AbstractSeq2SeqIntegrationTest): | |
checkpoint_name = "uclanlp/plbart-base" | |
src_text = ["Is 0 the first Fibonacci number ?", "Find the sum of all prime numbers ."] | |
tgt_text = ["0 the first Fibonacci number?", "the sum of all prime numbers.......... the the"] | |
def test_base_generate(self): | |
inputs = self.tokenizer([self.src_text[0]], return_tensors="pt").to(torch_device) | |
src_lan = self.tokenizer._convert_lang_code_special_format("en_XX") | |
translated_tokens = self.model.generate( | |
input_ids=inputs["input_ids"].to(torch_device), | |
decoder_start_token_id=self.tokenizer.lang_code_to_id[src_lan], | |
) | |
decoded = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True) | |
self.assertEqual(self.tgt_text[0], decoded[0]) | |
def test_fill_mask(self): | |
inputs = self.tokenizer(["Is 0 the <mask> Fibonacci <mask> ?"], return_tensors="pt").to(torch_device) | |
src_lan = self.tokenizer._convert_lang_code_special_format("en_XX") | |
outputs = self.model.generate( | |
inputs["input_ids"], decoder_start_token_id=self.tokenizer.lang_code_to_id[src_lan], num_beams=1 | |
) | |
prediction: str = self.tokenizer.batch_decode( | |
outputs, clean_up_tokenization_spaces=True, skip_special_tokens=True | |
)[0] | |
self.assertEqual(prediction, "0 0 the 0 the 0 the 0 the 0 the 0 the 0 the 0 the") | |
class PLBartStandaloneDecoderModelTester: | |
def __init__( | |
self, | |
parent, | |
vocab_size=99, | |
batch_size=13, | |
d_model=16, | |
decoder_seq_length=7, | |
is_training=True, | |
is_decoder=True, | |
use_attention_mask=True, | |
use_cache=False, | |
use_labels=True, | |
decoder_start_token_id=2, | |
decoder_ffn_dim=32, | |
decoder_layers=4, | |
encoder_attention_heads=4, | |
decoder_attention_heads=4, | |
max_position_embeddings=30, | |
is_encoder_decoder=False, | |
pad_token_id=0, | |
bos_token_id=1, | |
eos_token_id=2, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.decoder_seq_length = decoder_seq_length | |
# For common tests | |
self.seq_length = self.decoder_seq_length | |
self.is_training = is_training | |
self.use_attention_mask = use_attention_mask | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.d_model = d_model | |
self.hidden_size = d_model | |
self.num_hidden_layers = decoder_layers | |
self.decoder_layers = decoder_layers | |
self.decoder_ffn_dim = decoder_ffn_dim | |
self.encoder_attention_heads = encoder_attention_heads | |
self.decoder_attention_heads = decoder_attention_heads | |
self.num_attention_heads = decoder_attention_heads | |
self.eos_token_id = eos_token_id | |
self.bos_token_id = bos_token_id | |
self.pad_token_id = pad_token_id | |
self.decoder_start_token_id = decoder_start_token_id | |
self.use_cache = use_cache | |
self.max_position_embeddings = max_position_embeddings | |
self.is_encoder_decoder = is_encoder_decoder | |
self.scope = None | |
self.decoder_key_length = decoder_seq_length | |
self.base_model_out_len = 2 | |
self.decoder_attention_idx = 1 | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) | |
attention_mask = None | |
if self.use_attention_mask: | |
attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) | |
lm_labels = None | |
if self.use_labels: | |
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) | |
config = PLBartConfig( | |
vocab_size=self.vocab_size, | |
d_model=self.d_model, | |
decoder_layers=self.decoder_layers, | |
decoder_ffn_dim=self.decoder_ffn_dim, | |
encoder_attention_heads=self.encoder_attention_heads, | |
decoder_attention_heads=self.decoder_attention_heads, | |
eos_token_id=self.eos_token_id, | |
bos_token_id=self.bos_token_id, | |
use_cache=self.use_cache, | |
pad_token_id=self.pad_token_id, | |
decoder_start_token_id=self.decoder_start_token_id, | |
max_position_embeddings=self.max_position_embeddings, | |
is_encoder_decoder=self.is_encoder_decoder, | |
) | |
return (config, input_ids, attention_mask, lm_labels) | |
def create_and_check_decoder_model_past( | |
self, | |
config, | |
input_ids, | |
attention_mask, | |
lm_labels, | |
): | |
config.use_cache = True | |
model = PLBartDecoder(config=config).to(torch_device).eval() | |
# first forward pass | |
outputs = model(input_ids, use_cache=True) | |
outputs_use_cache_conf = model(input_ids) | |
outputs_no_past = model(input_ids, use_cache=False) | |
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) | |
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) | |
past_key_values = outputs["past_key_values"] | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
# append to next input_ids and | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
output_from_no_past = model(next_input_ids)["last_hidden_state"] | |
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
def create_and_check_decoder_model_attention_mask_past( | |
self, | |
config, | |
input_ids, | |
attention_mask, | |
lm_labels, | |
): | |
model = PLBartDecoder(config=config).to(torch_device).eval() | |
# create attention mask | |
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) | |
half_seq_length = input_ids.shape[-1] // 2 | |
attn_mask[:, half_seq_length:] = 0 | |
# first forward pass | |
past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"] | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
# change a random masked slice from input_ids | |
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 | |
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) | |
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens | |
# append to next input_ids and attn_mask | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
attn_mask = torch.cat( | |
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], | |
dim=1, | |
) | |
# get two different outputs | |
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] | |
output_from_past = model(next_tokens, attention_mask=attn_mask, past_key_values=past_key_values)[ | |
"last_hidden_state" | |
] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
(config, input_ids, attention_mask, lm_labels) = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask} | |
return config, inputs_dict | |
class PLBartStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): | |
all_model_classes = (PLBartDecoder, PLBartForCausalLM) if is_torch_available() else () | |
all_generative_model_classes = (PLBartForCausalLM,) if is_torch_available() else () | |
test_pruning = False | |
is_encoder_decoder = False | |
def setUp(self): | |
self.model_tester = PLBartStandaloneDecoderModelTester(self, is_training=False) | |
self.config_tester = ConfigTester(self, config_class=PLBartConfig) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_decoder_model_past(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_decoder_model_past(*config_and_inputs) | |
def test_decoder_model_attn_mask_past(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs) | |
def test_retain_grad_hidden_states_attentions(self): | |
# decoder cannot keep gradients | |
return | |