Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch Pix2Struct model. """ | |
import copy | |
import inspect | |
import os | |
import tempfile | |
import unittest | |
import numpy as np | |
import requests | |
from transformers import Pix2StructConfig, Pix2StructTextConfig, Pix2StructVisionConfig | |
from transformers.testing_utils import require_torch, require_vision, slow, torch_device | |
from transformers.utils import is_torch_available, is_vision_available | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ( | |
ModelTesterMixin, | |
_config_zero_init, | |
floats_tensor, | |
ids_tensor, | |
random_attention_mask, | |
) | |
if is_torch_available(): | |
import torch | |
from torch import nn | |
from transformers import ( | |
Pix2StructForConditionalGeneration, | |
Pix2StructProcessor, | |
Pix2StructTextModel, | |
Pix2StructVisionModel, | |
) | |
from transformers.models.pix2struct.modeling_pix2struct import PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST | |
if is_vision_available(): | |
from PIL import Image | |
class Pix2StructVisionModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=12, | |
image_size=30, | |
patch_size=2, | |
num_channels=3, | |
is_training=True, | |
hidden_size=12, | |
patch_embed_hidden_size=12, | |
projection_dim=32, | |
max_patches=64, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
dropout=0.1, | |
attention_dropout=0.1, | |
initializer_range=1e-10, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.image_size = image_size | |
self.patch_embed_hidden_size = patch_embed_hidden_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.is_training = is_training | |
self.hidden_size = hidden_size | |
self.max_patches = max_patches | |
self.seq_length = self.max_patches | |
self.patch_proj_dim = ((patch_size**2) * num_channels) + 2 | |
self.projection_dim = projection_dim | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.initializer_range = initializer_range | |
self.scope = scope | |
def prepare_config_and_inputs(self): | |
flattened_patches = floats_tensor([self.batch_size, self.max_patches, self.patch_proj_dim]) | |
config = self.get_config() | |
return config, flattened_patches | |
def get_config(self): | |
return Pix2StructVisionConfig( | |
image_size=self.image_size, | |
patch_size=self.patch_size, | |
num_channels=self.num_channels, | |
hidden_size=self.hidden_size, | |
projection_dim=self.projection_dim, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
dropout=self.dropout, | |
attention_dropout=self.attention_dropout, | |
initializer_range=self.initializer_range, | |
patch_embed_hidden_size=self.patch_embed_hidden_size, | |
) | |
def create_and_check_model(self, config, flattened_patches): | |
model = Pix2StructVisionModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
result = model(flattened_patches) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, flattened_patches = config_and_inputs | |
inputs_dict = { | |
"flattened_patches": flattened_patches, | |
"attention_mask": torch.randint(0, 2, (self.batch_size, self.max_patches)), | |
} | |
return config, inputs_dict | |
class Pix2StructVisionModelTest(ModelTesterMixin, unittest.TestCase): | |
""" | |
Here we also overwrite some of the tests of test_modeling_common.py, as Pix2Struct does not use input_ids, inputs_embeds, | |
attention_mask and seq_length. | |
""" | |
all_model_classes = (Pix2StructVisionModel,) if is_torch_available() else () | |
fx_compatible = False | |
test_pruning = False | |
test_resize_embeddings = False | |
test_head_masking = False | |
def setUp(self): | |
self.model_tester = Pix2StructVisionModelTester(self) | |
self.config_tester = ConfigTester( | |
self, config_class=Pix2StructVisionConfig, has_text_modality=False, hidden_size=37 | |
) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_inputs_embeds(self): | |
pass | |
def test_model_common_attributes(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) | |
x = model.get_output_embeddings() | |
self.assertTrue(x is None or isinstance(x, nn.Linear)) | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["flattened_patches"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_training(self): | |
pass | |
def test_training_gradient_checkpointing(self): | |
pass | |
def test_retain_grad_hidden_states_attentions(self): | |
pass | |
def test_save_load_fast_init_from_base(self): | |
pass | |
def test_save_load_fast_init_to_base(self): | |
pass | |
def test_model_from_pretrained(self): | |
for model_name in PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = Pix2StructVisionModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class Pix2StructTextModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=12, | |
seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_labels=True, | |
vocab_size=99, | |
hidden_size=12, | |
projection_dim=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
dropout=0.1, | |
attention_dropout=0.1, | |
max_position_embeddings=512, | |
initializer_range=0.02, | |
bos_token_id=0, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_labels = use_labels | |
self.d_kv = hidden_size // num_attention_heads | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.projection_dim = projection_dim | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.max_position_embeddings = max_position_embeddings | |
self.initializer_range = initializer_range | |
self.scope = scope | |
self.bos_token_id = bos_token_id | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
if input_mask is not None: | |
batch_size, seq_length = input_mask.shape | |
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) | |
for batch_idx, start_index in enumerate(rnd_start_indices): | |
input_mask[batch_idx, :start_index] = 1 | |
input_mask[batch_idx, start_index:] = 0 | |
config = self.get_config() | |
return config, input_ids, input_mask | |
def get_config(self): | |
return Pix2StructTextConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
projection_dim=self.projection_dim, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
dropout=self.dropout, | |
attention_dropout=self.attention_dropout, | |
max_position_embeddings=self.max_position_embeddings, | |
initializer_range=self.initializer_range, | |
bos_token_id=self.bos_token_id, | |
d_kv=self.d_kv, | |
) | |
def create_and_check_model(self, config, input_ids, input_mask): | |
model = Pix2StructTextModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
result = model(input_ids, attention_mask=input_mask) | |
result = model(input_ids) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, input_ids, input_mask = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} | |
return config, inputs_dict | |
class Pix2StructTextModelTest(ModelTesterMixin, unittest.TestCase): | |
all_model_classes = (Pix2StructTextModel,) if is_torch_available() else () | |
fx_compatible = False | |
test_pruning = False | |
test_head_masking = False | |
def setUp(self): | |
self.model_tester = Pix2StructTextModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=Pix2StructTextConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_training(self): | |
pass | |
def test_training_gradient_checkpointing(self): | |
pass | |
def test_inputs_embeds(self): | |
pass | |
def test_save_load_fast_init_from_base(self): | |
pass | |
def test_save_load_fast_init_to_base(self): | |
pass | |
def test_model_from_pretrained(self): | |
for model_name in PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = Pix2StructTextModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class Pix2StructTextImageModelsModelTester: | |
def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True): | |
if text_kwargs is None: | |
text_kwargs = {} | |
if vision_kwargs is None: | |
vision_kwargs = {} | |
self.parent = parent | |
self.text_model_tester = Pix2StructTextModelTester(parent, **text_kwargs) | |
self.vision_model_tester = Pix2StructVisionModelTester(parent, **vision_kwargs) | |
self.is_training = is_training | |
def prepare_config_and_inputs(self): | |
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() | |
vision_config, flattened_patches = self.vision_model_tester.prepare_config_and_inputs() | |
config = self.get_config(text_config, vision_config) | |
return config, input_ids, attention_mask, flattened_patches | |
def get_config(self, text_config, vision_config): | |
return Pix2StructConfig.from_text_vision_configs(text_config, vision_config, projection_dim=64) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, input_ids, decoder_attention_mask, flattened_patches = config_and_inputs | |
attention_mask = (flattened_patches.sum(dim=-1) != 0).float() | |
inputs_dict = { | |
"decoder_input_ids": input_ids, | |
"labels": input_ids, | |
"decoder_attention_mask": decoder_attention_mask, | |
"flattened_patches": flattened_patches, | |
"attention_mask": attention_mask, | |
} | |
return config, inputs_dict | |
class Pix2StructTextImageModelTest(ModelTesterMixin, unittest.TestCase): | |
all_model_classes = (Pix2StructForConditionalGeneration,) if is_torch_available() else () | |
fx_compatible = False | |
test_head_masking = False | |
test_pruning = False | |
test_resize_embeddings = True | |
test_attention_outputs = False | |
test_torchscript = False | |
def setUp(self): | |
self.model_tester = Pix2StructTextImageModelsModelTester(self) | |
def test_model(self): | |
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config).to(torch_device) | |
output = model(**input_dict) | |
self.assertEqual( | |
output[1].shape, | |
( | |
self.model_tester.vision_model_tester.batch_size, | |
self.model_tester.text_model_tester.seq_length, | |
self.model_tester.text_model_tester.vocab_size, | |
), | |
) | |
def test_hidden_states_output(self): | |
pass | |
def test_inputs_embeds(self): | |
pass | |
def test_retain_grad_hidden_states_attentions(self): | |
pass | |
def test_model_common_attributes(self): | |
pass | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = [ | |
"flattened_patches", | |
"attention_mask", | |
"decoder_input_ids", | |
"decoder_attention_mask", | |
"head_mask", | |
"decoder_head_mask", | |
"cross_attn_head_mask", | |
"encoder_outputs", | |
"past_key_values", | |
"labels", | |
"decoder_inputs_embeds", | |
"use_cache", | |
] | |
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) | |
def test_training(self): | |
if not self.model_tester.is_training: | |
return | |
for model_class in self.all_model_classes[:-1]: | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.return_dict = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.train() | |
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
# hardcode labels to be the same as input_ids | |
inputs["labels"] = inputs["input_ids"] | |
loss = model(**inputs).loss | |
loss.backward() | |
def test_training_gradient_checkpointing(self): | |
if not self.model_tester.is_training: | |
return | |
for model_class in self.all_model_classes[:-1]: | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.use_cache = False | |
config.return_dict = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.gradient_checkpointing_enable() | |
model.train() | |
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
# hardcode labels to be the same as input_ids | |
inputs["labels"] = inputs["input_ids"] | |
loss = model(**inputs).loss | |
loss.backward() | |
# override as the `logit_scale` parameter initilization is different for Pix2Struct | |
def test_initialization(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
configs_no_init = _config_zero_init(config) | |
for model_class in self.all_model_classes: | |
model = model_class(config=configs_no_init) | |
for name, param in model.named_parameters(): | |
if param.requires_grad: | |
# check if `logit_scale` is initilized as per the original implementation | |
if name == "logit_scale": | |
self.assertAlmostEqual( | |
param.data.item(), | |
np.log(1 / 0.07), | |
delta=1e-3, | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
else: | |
self.assertIn( | |
((param.data.mean() * 1e9).round() / 1e9).item(), | |
[0.0, 1.0], | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
# overwrite because `vocab_size` is not an attribute of `Pix2StructConfig` but rather `Pix2StructTextConfig` | |
def test_resize_tokens_embeddings(self): | |
original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
if not self.test_resize_embeddings: | |
return | |
for model_class in self.all_model_classes: | |
config = copy.deepcopy(original_config) | |
model = model_class(config) | |
model.to(torch_device) | |
if self.model_tester.is_training is False: | |
model.eval() | |
model_vocab_size = config.text_config.vocab_size | |
# Retrieve the embeddings and clone theme | |
model_embed = model.resize_token_embeddings(model_vocab_size) | |
cloned_embeddings = model_embed.weight.clone() | |
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size | |
model_embed = model.resize_token_embeddings(model_vocab_size + 10) | |
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10) | |
# Check that it actually resizes the embeddings matrix | |
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) | |
# Check that the model can still do a forward pass successfully (every parameter should be resized) | |
model(**self._prepare_for_class(inputs_dict, model_class)) | |
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size | |
model_embed = model.resize_token_embeddings(model_vocab_size - 15) | |
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15) | |
# Check that it actually resizes the embeddings matrix | |
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15) | |
# Check that the model can still do a forward pass successfully (every parameter should be resized) | |
# Decoder input ids should be clamped to the maximum size of the vocabulary | |
if "decoder_input_ids" in inputs_dict: | |
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) | |
model(**self._prepare_for_class(inputs_dict, model_class)) | |
# Check that adding and removing tokens has not modified the first part of the embedding matrix. | |
models_equal = True | |
for p1, p2 in zip(cloned_embeddings, model_embed.weight): | |
if p1.data.ne(p2.data).sum() > 0: | |
models_equal = False | |
self.assertTrue(models_equal) | |
# overwrite because `vocab_size` is not an attribute of `Pix2StructConfig` but rather `Pix2StructTextConfig` | |
def test_resize_embeddings_untied(self): | |
original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
if not self.test_resize_embeddings: | |
return | |
original_config.tie_word_embeddings = False | |
# if model cannot untied embeddings -> leave test | |
if original_config.tie_word_embeddings: | |
return | |
for model_class in self.all_model_classes: | |
config = copy.deepcopy(original_config) | |
model = model_class(config).to(torch_device) | |
# if no output embeddings -> leave test | |
if model.get_output_embeddings() is None: | |
continue | |
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size | |
model_vocab_size = config.text_config.vocab_size | |
model.resize_token_embeddings(model_vocab_size + 10) | |
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10) | |
output_embeds = model.get_output_embeddings() | |
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10) | |
# Check bias if present | |
if output_embeds.bias is not None: | |
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10) | |
# Check that the model can still do a forward pass successfully (every parameter should be resized) | |
model(**self._prepare_for_class(inputs_dict, model_class)) | |
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size | |
model.resize_token_embeddings(model_vocab_size - 15) | |
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15) | |
# Check that it actually resizes the embeddings matrix | |
output_embeds = model.get_output_embeddings() | |
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15) | |
# Check bias if present | |
if output_embeds.bias is not None: | |
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15) | |
# Check that the model can still do a forward pass successfully (every parameter should be resized) | |
# Decoder input ids should be clamped to the maximum size of the vocabulary | |
if "decoder_input_ids" in inputs_dict: | |
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) | |
# Check that the model can still do a forward pass successfully (every parameter should be resized) | |
model(**self._prepare_for_class(inputs_dict, model_class)) | |
def test_tied_model_weights_key_ignore(self): | |
pass | |
def _create_and_check_torchscript(self, config, inputs_dict): | |
if not self.test_torchscript: | |
return | |
configs_no_init = _config_zero_init(config) # To be sure we have no Nan | |
configs_no_init.torchscript = True | |
configs_no_init.return_dict = False | |
for model_class in self.all_model_classes: | |
model = model_class(config=configs_no_init) | |
model.to(torch_device) | |
model.eval() | |
try: | |
input_ids = inputs_dict["input_ids"] | |
flattened_patches = inputs_dict["flattened_patches"] # Pix2Struct needs flattened_patches | |
traced_model = torch.jit.trace(model, (input_ids, flattened_patches)) | |
except RuntimeError: | |
self.fail("Couldn't trace module.") | |
with tempfile.TemporaryDirectory() as tmp_dir_name: | |
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") | |
try: | |
torch.jit.save(traced_model, pt_file_name) | |
except Exception: | |
self.fail("Couldn't save module.") | |
try: | |
loaded_model = torch.jit.load(pt_file_name) | |
except Exception: | |
self.fail("Couldn't load module.") | |
model.to(torch_device) | |
model.eval() | |
loaded_model.to(torch_device) | |
loaded_model.eval() | |
model_state_dict = model.state_dict() | |
loaded_model_state_dict = loaded_model.state_dict() | |
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) | |
models_equal = True | |
for layer_name, p1 in model_state_dict.items(): | |
p2 = loaded_model_state_dict[layer_name] | |
if p1.data.ne(p2.data).sum() > 0: | |
models_equal = False | |
self.assertTrue(models_equal) | |
def test_load_vision_text_config(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
# Save Pix2StructConfig and check if we can load Pix2StructVisionConfig from it | |
with tempfile.TemporaryDirectory() as tmp_dir_name: | |
config.save_pretrained(tmp_dir_name) | |
vision_config = Pix2StructVisionConfig.from_pretrained(tmp_dir_name) | |
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) | |
# Save Pix2StructConfig and check if we can load Pix2StructTextConfig from it | |
with tempfile.TemporaryDirectory() as tmp_dir_name: | |
config.save_pretrained(tmp_dir_name) | |
text_config = Pix2StructTextConfig.from_pretrained(tmp_dir_name) | |
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) | |
# We will verify our results on an image of a stop sign | |
def prepare_img(): | |
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" | |
im = Image.open(requests.get(url, stream=True).raw) | |
return im | |
class Pix2StructIntegrationTest(unittest.TestCase): | |
def test_inference_image_captioning(self): | |
model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base").to(torch_device) | |
processor = Pix2StructProcessor.from_pretrained("google/pix2struct-textcaps-base") | |
image = prepare_img() | |
# image only | |
inputs = processor(images=image, return_tensors="pt").to(torch_device) | |
predictions = model.generate(**inputs) | |
self.assertEqual( | |
processor.decode(predictions[0], skip_special_tokens=True), "A stop sign is on a street corner." | |
) | |
def test_batched_inference_image_captioning(self): | |
model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base").to(torch_device) | |
processor = Pix2StructProcessor.from_pretrained("google/pix2struct-textcaps-base") | |
image_1 = prepare_img() | |
second_url = ( | |
"https://www.connollycove.com/wp-content/uploads/2019/06/temple-bar-dublin-world-famous-irish-pub.jpg" | |
) | |
image_2 = Image.open(requests.get(second_url, stream=True).raw) | |
# image only | |
inputs = processor(images=[image_1, image_2], return_tensors="pt").to(torch_device) | |
predictions = model.generate(**inputs) | |
self.assertEqual( | |
processor.decode(predictions[0], skip_special_tokens=True), "A stop sign is on a street corner." | |
) | |
self.assertEqual( | |
processor.decode(predictions[1], skip_special_tokens=True), | |
"A row of books including The Temple Bar and Guiness.", | |
) | |
def test_batched_inference_image_captioning_conditioned(self): | |
model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base").to(torch_device) | |
processor = Pix2StructProcessor.from_pretrained("google/pix2struct-textcaps-base") | |
image_1 = prepare_img() | |
second_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/temple-bar-dublin-world-famous-irish-pub.jpg" | |
image_2 = Image.open(requests.get(second_url, stream=True).raw) | |
texts = ["A picture of", "An photography of"] | |
# image only | |
inputs = processor(images=[image_1, image_2], text=texts, return_tensors="pt").to(torch_device) | |
predictions = model.generate(**inputs) | |
self.assertEqual( | |
processor.decode(predictions[0], skip_special_tokens=True), "A picture of a stop sign that says yes." | |
) | |
self.assertEqual( | |
processor.decode(predictions[1], skip_special_tokens=True), | |
"An photography of the Temple Bar and a few other places.", | |
) | |
def test_vqa_model(self): | |
model_id = "google/pix2struct-ai2d-base" | |
image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg" | |
image = Image.open(requests.get(image_url, stream=True).raw) | |
model = Pix2StructForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).to( | |
torch_device | |
) | |
processor = Pix2StructProcessor.from_pretrained(model_id) | |
# image only | |
text = "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud" | |
inputs = processor(images=image, return_tensors="pt", text=text).to(torch_device, torch.bfloat16) | |
predictions = model.generate(**inputs) | |
self.assertEqual(processor.decode(predictions[0], skip_special_tokens=True), "ash cloud") | |
def test_vqa_model_batched(self): | |
model_id = "google/pix2struct-ai2d-base" | |
image_urls = [ | |
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg", | |
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo-2.png", | |
] | |
images = [Image.open(requests.get(image_url, stream=True).raw) for image_url in image_urls] | |
texts = [ | |
"What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud", | |
"What is the producer in the diagram? (1) Phytoplankton (2) Zooplankton (3) Large fish (4) Small fish", | |
] | |
model = Pix2StructForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).to( | |
torch_device | |
) | |
processor = Pix2StructProcessor.from_pretrained(model_id) | |
inputs = processor(images=images, return_tensors="pt", text=texts).to(torch_device, torch.bfloat16) | |
predictions = model.generate(**inputs) | |
self.assertEqual(processor.decode(predictions[0], skip_special_tokens=True), "ash cloud") | |
self.assertEqual(processor.decode(predictions[1], skip_special_tokens=True), "Phytoplankton") | |