Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021, The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch OPT model. """ | |
import copy | |
import tempfile | |
import unittest | |
import timeout_decorator # noqa | |
from transformers import OPTConfig, is_torch_available | |
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device | |
from ...generation.test_utils import GenerationTesterMixin | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, ids_tensor | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
GPT2Tokenizer, | |
OPTForCausalLM, | |
OPTForQuestionAnswering, | |
OPTForSequenceClassification, | |
OPTModel, | |
) | |
def prepare_opt_inputs_dict( | |
config, | |
input_ids, | |
decoder_input_ids=None, | |
attention_mask=None, | |
decoder_attention_mask=None, | |
head_mask=None, | |
decoder_head_mask=None, | |
): | |
if attention_mask is None: | |
attention_mask = input_ids.ne(config.pad_token_id) | |
return { | |
"input_ids": input_ids, | |
"attention_mask": attention_mask, | |
"head_mask": head_mask, | |
} | |
class OPTModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=True, | |
use_labels=False, | |
vocab_size=99, | |
hidden_size=16, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=4, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=20, | |
eos_token_id=2, | |
pad_token_id=1, | |
bos_token_id=0, | |
embed_dim=16, | |
num_labels=3, | |
word_embed_proj_dim=16, | |
type_sequence_label_size=2, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.eos_token_id = eos_token_id | |
self.pad_token_id = pad_token_id | |
self.bos_token_id = bos_token_id | |
self.embed_dim = embed_dim | |
self.num_labels = num_labels | |
self.type_sequence_label_size = type_sequence_label_size | |
self.word_embed_proj_dim = word_embed_proj_dim | |
self.is_encoder_decoder = False | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp( | |
3, | |
) | |
input_ids[:, -1] = self.eos_token_id # Eos Token | |
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
config = self.get_config() | |
inputs_dict = prepare_opt_inputs_dict(config, input_ids, decoder_input_ids) | |
return config, inputs_dict | |
def get_config(self): | |
return OPTConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
ffn_dim=self.intermediate_size, | |
dropout=self.hidden_dropout_prob, | |
attention_dropout=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
eos_token_id=self.eos_token_id, | |
bos_token_id=self.bos_token_id, | |
pad_token_id=self.pad_token_id, | |
embed_dim=self.embed_dim, | |
is_encoder_decoder=False, | |
word_embed_proj_dim=self.word_embed_proj_dim, | |
) | |
def get_pipeline_config(self): | |
config = self.get_config() | |
config.max_position_embeddings = 100 | |
return config | |
def prepare_config_and_inputs_for_common(self): | |
config, inputs_dict = self.prepare_config_and_inputs() | |
return config, inputs_dict | |
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): | |
model = OPTModel(config=config).to(torch_device).eval() | |
input_ids = inputs_dict["input_ids"] | |
attention_mask = inputs_dict["attention_mask"] | |
head_mask = inputs_dict["head_mask"] | |
# first forward pass | |
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) | |
output, past_key_values = outputs.to_tuple() | |
# create hypothetical multiple next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) | |
next_attn_mask = ids_tensor((self.batch_size, 3), 2) | |
# append to next input_ids and | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) | |
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] | |
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ | |
"last_hidden_state" | |
] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() | |
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
# test no attention_mask works | |
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) | |
_, past_key_values = outputs.to_tuple() | |
output_from_no_past = model(next_input_ids)["last_hidden_state"] | |
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
class OPTModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
(OPTModel, OPTForCausalLM, OPTForSequenceClassification, OPTForQuestionAnswering) | |
if is_torch_available() | |
else () | |
) | |
all_generative_model_classes = (OPTForCausalLM,) if is_torch_available() else () | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": OPTModel, | |
"question-answering": OPTForQuestionAnswering, | |
"text-classification": OPTForSequenceClassification, | |
"text-generation": OPTForCausalLM, | |
"zero-shot": OPTForSequenceClassification, | |
} | |
if is_torch_available() | |
else {} | |
) | |
is_encoder_decoder = False | |
fx_compatible = True | |
test_pruning = False | |
test_missing_keys = False | |
# TODO: Fix the failed tests | |
def is_pipeline_test_to_skip( | |
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name | |
): | |
if ( | |
pipeline_test_casse_name == "QAPipelineTests" | |
and tokenizer_name is not None | |
and not tokenizer_name.endswith("Fast") | |
): | |
# `QAPipelineTests` fails for a few models when the slower tokenizer are used. | |
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) | |
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer | |
return True | |
return False | |
def setUp(self): | |
self.model_tester = OPTModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=OPTConfig) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_save_load_strict(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname) | |
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) | |
self.assertEqual(info["missing_keys"], []) | |
def test_decoder_model_past_with_large_inputs(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) | |
def test_inputs_embeds(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in (OPTModel,): | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) | |
if not self.is_encoder_decoder: | |
input_ids = inputs["input_ids"] | |
del inputs["input_ids"] | |
else: | |
encoder_input_ids = inputs["input_ids"] | |
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) | |
del inputs["input_ids"] | |
inputs.pop("decoder_input_ids", None) | |
wte = model.get_input_embeddings() | |
if not self.is_encoder_decoder: | |
inputs["inputs_embeds"] = wte(input_ids) | |
else: | |
inputs["inputs_embeds"] = wte(encoder_input_ids) | |
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) | |
with torch.no_grad(): | |
model(**inputs)[0] | |
def test_generate_fp16(self): | |
config, input_dict = self.model_tester.prepare_config_and_inputs() | |
input_ids = input_dict["input_ids"] | |
attention_mask = input_ids.ne(1).to(torch_device) | |
model = OPTForCausalLM(config).eval().to(torch_device) | |
if torch_device == "cuda": | |
model.half() | |
model.generate(input_ids, attention_mask=attention_mask) | |
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) | |
def test_opt_sequence_classification_model(self): | |
config, input_dict = self.model_tester.prepare_config_and_inputs() | |
config.num_labels = 3 | |
input_ids = input_dict["input_ids"] | |
attention_mask = input_ids.ne(1).to(torch_device) | |
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) | |
model = OPTForSequenceClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) | |
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) | |
def test_opt_sequence_classification_model_for_multi_label(self): | |
config, input_dict = self.model_tester.prepare_config_and_inputs() | |
config.num_labels = 3 | |
config.problem_type = "multi_label_classification" | |
input_ids = input_dict["input_ids"] | |
attention_mask = input_ids.ne(1).to(torch_device) | |
sequence_labels = ids_tensor( | |
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size | |
).to(torch.float) | |
model = OPTForSequenceClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) | |
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) | |
def assert_tensors_close(a, b, atol=1e-12, prefix=""): | |
"""If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error.""" | |
if a is None and b is None: | |
return True | |
try: | |
if torch.allclose(a, b, atol=atol): | |
return True | |
raise | |
except Exception: | |
pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item() | |
if a.numel() > 100: | |
msg = f"tensor values are {pct_different:.1%} percent different." | |
else: | |
msg = f"{a} != {b}" | |
if prefix: | |
msg = prefix + ": " + msg | |
raise AssertionError(msg) | |
def _long_tensor(tok_lst): | |
return torch.tensor(tok_lst, dtype=torch.long, device=torch_device) | |
class OPTModelIntegrationTests(unittest.TestCase): | |
def test_inference_no_head(self): | |
model = OPTModel.from_pretrained("facebook/opt-350m").to(torch_device) | |
input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) | |
with torch.no_grad(): | |
output = model(input_ids=input_ids).last_hidden_state | |
expected_shape = torch.Size((1, 11, 512)) | |
self.assertEqual(output.shape, expected_shape) | |
# expected value works for CPU, as well as GPU (with TF32 disabled) | |
expected_slice = torch.tensor( | |
[ | |
[-0.28726277, -1.9241608, -0.3058734], | |
[-1.2737825, -0.13332152, -0.18766522], | |
[0.41159445, 0.1191957, -1.3107123], | |
], | |
device=torch_device, | |
) | |
assert_tensors_close(output[0, :3, :3], expected_slice, atol=5e-5) | |
class OPTEmbeddingsTest(unittest.TestCase): | |
def setUp(self): | |
super().setUp() | |
self.path_model = "facebook/opt-350m" | |
def test_load_model(self): | |
try: | |
_ = OPTForCausalLM.from_pretrained(self.path_model) | |
except BaseException: | |
self.fail("Failed loading model") | |
def test_logits(self): | |
model = OPTForCausalLM.from_pretrained(self.path_model) | |
model = model.eval() | |
tokenizer = GPT2Tokenizer.from_pretrained(self.path_model) | |
prompts = [ | |
"Today is a beautiful day and I want to", | |
"In the city of", | |
"Paris is the capital of France and", | |
"Computers and mobile phones have taken", | |
] | |
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False | |
inputs = tokenizer(prompts, return_tensors="pt", padding=True, add_special_tokens=False) | |
logits = model(inputs.input_ids, attention_mask=inputs.attention_mask)[0].mean(dim=-1) | |
# logits_meta = torch.load(self.path_logits_meta) | |
logits_meta = torch.Tensor( | |
[ | |
[1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], | |
[-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], | |
[0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], | |
[6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], | |
] | |
) | |
assert torch.allclose(logits, logits_meta, atol=1e-4) | |
class OPTGenerationTest(unittest.TestCase): | |
def prompts(self): | |
return [ | |
"Today is a beautiful day and I want", | |
"In the city of", | |
"Paris is the capital of France and", | |
"Computers and mobile phones have taken", | |
] | |
def test_generation_pre_attn_layer_norm(self): | |
model_id = "facebook/opt-125m" | |
EXPECTED_OUTPUTS = [ | |
"Today is a beautiful day and I want to", | |
"In the city of New York, the city", | |
"Paris is the capital of France and the capital", | |
"Computers and mobile phones have taken over the", | |
] | |
predicted_outputs = [] | |
tokenizer = GPT2Tokenizer.from_pretrained(model_id) | |
model = OPTForCausalLM.from_pretrained(model_id) | |
for prompt in self.prompts: | |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids | |
generated_ids = model.generate(input_ids, max_length=10) | |
generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) | |
predicted_outputs += generated_string | |
self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS) | |
def test_batch_generation(self): | |
model_id = "facebook/opt-350m" | |
tokenizer = GPT2Tokenizer.from_pretrained(model_id) | |
model = OPTForCausalLM.from_pretrained(model_id) | |
model.to(torch_device) | |
tokenizer.padding_side = "left" | |
# use different length sentences to test batching | |
sentences = [ | |
"Hello, my dog is a little", | |
"Today, I", | |
] | |
inputs = tokenizer(sentences, return_tensors="pt", padding=True) | |
input_ids = inputs["input_ids"].to(torch_device) | |
outputs = model.generate( | |
input_ids=input_ids, | |
attention_mask=inputs["attention_mask"].to(torch_device), | |
) | |
inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device) | |
output_non_padded = model.generate(input_ids=inputs_non_padded) | |
num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() | |
inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device) | |
output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings) | |
batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True) | |
padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True) | |
expected_output_sentence = [ | |
"Hello, my dog is a little bit of a dork.\nI'm a little bit", | |
"Today, I was in the middle of a conversation with a friend about the", | |
] | |
self.assertListEqual(expected_output_sentence, batch_out_sentence) | |
self.assertListEqual(batch_out_sentence, [non_padded_sentence, padded_sentence]) | |
def test_generation_post_attn_layer_norm(self): | |
model_id = "facebook/opt-350m" | |
EXPECTED_OUTPUTS = [ | |
"Today is a beautiful day and I want to", | |
"In the city of San Francisco, the city", | |
"Paris is the capital of France and the capital", | |
"Computers and mobile phones have taken over the", | |
] | |
predicted_outputs = [] | |
tokenizer = GPT2Tokenizer.from_pretrained(model_id) | |
model = OPTForCausalLM.from_pretrained(model_id) | |
for prompt in self.prompts: | |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids | |
generated_ids = model.generate(input_ids, max_length=10) | |
generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) | |
predicted_outputs += generated_string | |
self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS) | |
def test_batched_nan_fp16(self): | |
# a bug manifested starting at models facebook/opt-1.3 and larger when running batched generations, | |
# therefore not using a tiny model, but the smallest model the problem was seen with which is opt-1.3b. | |
# please refer to this github thread: https://github.com/huggingface/transformers/pull/17437 for more details | |
model_name = "facebook/opt-1.3b" | |
tokenizer = GPT2Tokenizer.from_pretrained(model_name, use_fast=False, padding_side="left") | |
model = OPTForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, use_cache=True).cuda() | |
model = model.eval() | |
batch = tokenizer(["Who are you?", "Joe Biden is the president of"], padding=True, return_tensors="pt") | |
input_ids = batch["input_ids"].cuda() | |
attention_mask = batch["attention_mask"].cuda() | |
with torch.no_grad(): | |
outputs = model(input_ids, attention_mask=attention_mask) | |
self.assertFalse( | |
torch.isnan(outputs.logits[0]).any().item() | |
) # the first logits could contain NaNs if it fails | |
def test_contrastive_search_opt(self): | |
article = ( | |
"A chat between a curious human and the Statue of Liberty.\n\nHuman: What is your name?\nStatue: I am the " | |
"Statue of Liberty.\nHuman: Where do you live?\nStatue: New York City.\nHuman: How long have you lived " | |
"there?" | |
) | |
opt_tokenizer = GPT2Tokenizer.from_pretrained("facebook/opt-1.3b") | |
opt_model = OPTForCausalLM.from_pretrained("facebook/opt-1.3b").to(torch_device) | |
input_ids = opt_tokenizer(article, return_tensors="pt").input_ids.to(torch_device) | |
outputs = opt_model.generate(input_ids, penalty_alpha=0.6, top_k=5, max_length=256) | |
generated_text = opt_tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
self.assertListEqual( | |
generated_text, | |
[ | |
"A chat between a curious human and the Statue of Liberty.\n\nHuman: What is your name?\nStatue: I " | |
"am the Statue of Liberty.\nHuman: Where do you live?\nStatue: New York City.\nHuman: How long have " | |
"you lived there?\nStatue: A hundred years.\nHuman: And you’re from what country?\nStatue: The United " | |
"States of America.\nHuman: Why did you come to America?\nStatue: I came to escape the tyranny of my " | |
"country.\nHuman: What tyranny?\nStatue: They didn’t let me speak my mind.\nHuman: What was your " | |
"country?\nStatue: It was a country of immigrants.\nHuman: Who were the immigrants?\nStatue: They " | |
"were from all over the world.\nHuman: What language did they speak?\nStatue: French, Spanish, " | |
"Italian, German, English—you name it.\nHuman: And where did they come from?\nStatue: They came from " | |
"every country in the world.\nHuman: And you were born in what country?\nStatue: I was born in " | |
"France.\nHuman: And your parents were French?\nStatue" | |
], | |
) | |