Spaces:
Runtime error
Runtime error
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import numpy as np | |
import timeout_decorator # noqa | |
from transformers import OPTConfig, is_flax_available | |
from transformers.testing_utils import require_flax, require_sentencepiece, slow | |
from ...generation.test_flax_utils import FlaxGenerationTesterMixin | |
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor | |
if is_flax_available(): | |
import os | |
# The slow tests are often failing with OOM error on GPU | |
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed | |
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html | |
os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform" | |
import jax | |
import jax.numpy as jnp | |
from transformers import FlaxOPTForCausalLM, FlaxOPTModel, GPT2Tokenizer | |
def prepare_opt_inputs_dict(config, input_ids, attention_mask=None, head_mask=None): | |
if attention_mask is None: | |
attention_mask = np.where(input_ids != config.pad_token_id, 1, 0) | |
return { | |
"input_ids": input_ids, | |
"attention_mask": attention_mask, | |
} | |
class FlaxOPTModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=True, | |
use_labels=False, | |
vocab_size=99, | |
hidden_size=16, | |
num_hidden_layers=2, | |
num_attention_heads=4, | |
intermediate_size=4, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=20, | |
eos_token_id=2, | |
pad_token_id=1, | |
bos_token_id=0, | |
embed_dim=16, | |
word_embed_proj_dim=16, | |
initializer_range=0.02, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.eos_token_id = eos_token_id | |
self.pad_token_id = pad_token_id | |
self.bos_token_id = bos_token_id | |
self.embed_dim = embed_dim | |
self.word_embed_proj_dim = word_embed_proj_dim | |
self.initializer_range = initializer_range | |
self.is_encoder_decoder = False | |
def prepare_config_and_inputs(self): | |
input_ids = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size), 3, self.vocab_size) | |
input_ids = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.int64)), -1) | |
config = OPTConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
ffn_dim=self.intermediate_size, | |
dropout=self.hidden_dropout_prob, | |
attention_dropout=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
eos_token_id=self.eos_token_id, | |
bos_token_id=self.bos_token_id, | |
pad_token_id=self.pad_token_id, | |
embed_dim=self.embed_dim, | |
is_encoder_decoder=False, | |
word_embed_proj_dim=self.word_embed_proj_dim, | |
initializer_range=self.initializer_range, | |
use_cache=False, | |
) | |
inputs_dict = prepare_opt_inputs_dict(config, input_ids) | |
return config, inputs_dict | |
def prepare_config_and_inputs_for_common(self): | |
config, inputs_dict = self.prepare_config_and_inputs() | |
return config, inputs_dict | |
def check_use_cache_forward(self, model_class_name, config, inputs_dict): | |
max_length = 20 | |
model = model_class_name(config) | |
input_ids = inputs_dict["input_ids"] | |
attention_mask = inputs_dict["attention_mask"] | |
past_key_values = model.init_cache(input_ids.shape[0], max_length) | |
attention_mask = jnp.ones((input_ids.shape[0], max_length), dtype="i4") | |
position_ids = jnp.broadcast_to( | |
jnp.arange(input_ids.shape[-1] - 1)[None, :], | |
(input_ids.shape[0], input_ids.shape[-1] - 1), | |
) | |
outputs_cache = model( | |
input_ids[:, :-1], | |
attention_mask=attention_mask, | |
past_key_values=past_key_values, | |
position_ids=position_ids, | |
) | |
position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4") | |
outputs_cache_next = model( | |
input_ids[:, -1:], | |
attention_mask=attention_mask, | |
past_key_values=outputs_cache.past_key_values, | |
position_ids=position_ids, | |
) | |
outputs = model(input_ids) | |
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) | |
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") | |
def check_use_cache_forward_with_attn_mask(self, model_class_name, config, inputs_dict): | |
max_length = 20 | |
model = model_class_name(config) | |
input_ids, attention_mask = ( | |
inputs_dict["input_ids"], | |
inputs_dict["attention_mask"], | |
) | |
attention_mask_cache = jnp.concatenate( | |
[ | |
attention_mask, | |
jnp.zeros((attention_mask.shape[0], max_length - attention_mask.shape[1])), | |
], | |
axis=-1, | |
) | |
past_key_values = model.init_cache(input_ids.shape[0], max_length) | |
position_ids = jnp.broadcast_to( | |
jnp.arange(input_ids.shape[-1] - 1)[None, :], | |
(input_ids.shape[0], input_ids.shape[-1] - 1), | |
) | |
outputs_cache = model( | |
input_ids[:, :-1], | |
attention_mask=attention_mask_cache, | |
past_key_values=past_key_values, | |
position_ids=position_ids, | |
) | |
position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4") | |
outputs_cache_next = model( | |
input_ids[:, -1:], | |
past_key_values=outputs_cache.past_key_values, | |
attention_mask=attention_mask_cache, | |
position_ids=position_ids, | |
) | |
outputs = model(input_ids, attention_mask=attention_mask) | |
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) | |
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") | |
class FlaxOPTModelTest(FlaxModelTesterMixin, unittest.TestCase, FlaxGenerationTesterMixin): | |
all_model_classes = (FlaxOPTModel, FlaxOPTForCausalLM) if is_flax_available() else () | |
all_generative_model_classes = () if is_flax_available() else () | |
def setUp(self): | |
self.model_tester = FlaxOPTModelTester(self) | |
def test_use_cache_forward(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs() | |
for model_class in self.all_model_classes: | |
self.model_tester.check_use_cache_forward(model_class, config, inputs_dict) | |
def test_use_cache_forward_with_attn_mask(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs() | |
for model_class in self.all_model_classes: | |
self.model_tester.check_use_cache_forward_with_attn_mask(model_class, config, inputs_dict) | |
def test_model_from_pretrained(self): | |
for model_class_name in self.all_model_classes: | |
model = model_class_name.from_pretrained("facebook/opt-125m") | |
input_ids = np.ones((1, 1)) * model.config.eos_token_id | |
outputs = model(input_ids) | |
self.assertIsNotNone(outputs) | |
class FlaxOPTModelIntegrationTests(unittest.TestCase): | |
def test_inference_no_head(self): | |
model = FlaxOPTModel.from_pretrained("facebook/opt-350m") | |
input_ids = jnp.array([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) | |
output = model(input_ids=input_ids).last_hidden_state | |
expected_shape = (1, 11, 512) | |
self.assertEqual(output.shape, expected_shape) | |
expected_slice = jnp.array( | |
[[-0.2867, -1.9256, -0.3062], [-1.2711, -0.1337, -0.1897], [0.4109, 0.1187, -1.3142]] | |
) | |
self.assertTrue(jnp.allclose(output[:, :3, :3], expected_slice, atol=4e-2)) | |
class FlaxOPTEmbeddingsTest(unittest.TestCase): | |
def setUp(self): | |
super().setUp() | |
self.path_model = "facebook/opt-350m" | |
def test_logits(self): | |
model = FlaxOPTForCausalLM.from_pretrained(self.path_model) | |
tokenizer = GPT2Tokenizer.from_pretrained(self.path_model) | |
prompts = [ | |
"Today is a beautiful day and I want to", | |
"In the city of", | |
"Paris is the capital of France and", | |
"Computers and mobile phones have taken", | |
] | |
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False | |
inputs = tokenizer(prompts, return_tensors="jax", padding=True, add_special_tokens=False) | |
logits = model(inputs.input_ids, attention_mask=inputs.attention_mask)[0].mean(axis=-1) | |
logits_meta = jnp.array( | |
[ | |
[1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], | |
[-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], | |
[0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], | |
[6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], | |
] | |
) | |
self.assertTrue(jnp.allclose(logits, logits_meta, atol=4e-2)) | |
model = jax.jit(model) | |
logits = model(inputs.input_ids, attention_mask=inputs.attention_mask)[0].mean(axis=-1) | |
self.assertTrue(jnp.allclose(logits, logits_meta, atol=4e-2)) | |
class FlaxOPTGenerationTest(unittest.TestCase): | |
def prompts(self): | |
return [ | |
"Today is a beautiful day and I want", | |
"In the city of", | |
"Paris is the capital of France and", | |
"Computers and mobile phones have taken", | |
] | |
def test_generation_pre_attn_layer_norm(self): | |
model_id = "facebook/opt-125m" | |
EXPECTED_OUTPUTS = [ | |
"Today is a beautiful day and I want to", | |
"In the city of New York, the city", | |
"Paris is the capital of France and the capital", | |
"Computers and mobile phones have taken over the", | |
] | |
predicted_outputs = [] | |
model = FlaxOPTForCausalLM.from_pretrained(model_id) | |
tokenizer = GPT2Tokenizer.from_pretrained(model_id) | |
for prompt in self.prompts: | |
input_ids = tokenizer(prompt, return_tensors="jax").input_ids | |
generated_ids = model.generate(input_ids, max_length=10) | |
generated_ids = generated_ids[0] | |
generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) | |
predicted_outputs += generated_string | |
self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS) | |
def test_generation_post_attn_layer_norm(self): | |
model_id = "facebook/opt-350m" | |
EXPECTED_OUTPUTS = [ | |
"Today is a beautiful day and I want to", | |
"In the city of San Francisco, the city", | |
"Paris is the capital of France and the capital", | |
"Computers and mobile phones have taken over the", | |
] | |
predicted_outputs = [] | |
model = FlaxOPTForCausalLM.from_pretrained(model_id) | |
tokenizer = GPT2Tokenizer.from_pretrained(model_id) | |
for prompt in self.prompts: | |
input_ids = tokenizer(prompt, return_tensors="jax").input_ids | |
generated_ids = model.generate(input_ids, max_length=10) | |
generated_ids = generated_ids[0] | |
generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) | |
predicted_outputs += generated_string | |
self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS) | |
def test_jitted_batch_generation(self): | |
model_id = "facebook/opt-125m" | |
EXPECTED_OUTPUTS = [ | |
"Today is a beautiful day and I want to thank", | |
"In the city of Rome Canaver Canaver Canaver Canaver", | |
] | |
model = FlaxOPTForCausalLM.from_pretrained(model_id) | |
tokenizer = GPT2Tokenizer.from_pretrained(model_id) | |
inputs = tokenizer( | |
[ | |
"Today is a beautiful day and I want to", | |
"In the city of", | |
], | |
return_tensors="jax", | |
padding=True, | |
) | |
jit_generate = jax.jit(model.generate) | |
output_sequences = jit_generate(inputs["input_ids"], attention_mask=inputs["attention_mask"]).sequences | |
output_string = tokenizer.batch_decode(output_sequences, skip_special_tokens=True) | |
self.assertIsNotNone(output_string, EXPECTED_OUTPUTS) | |
def test_batch_generation(self): | |
model_id = "facebook/opt-350m" | |
tokenizer = GPT2Tokenizer.from_pretrained(model_id) | |
model = FlaxOPTForCausalLM.from_pretrained(model_id) | |
tokenizer.padding_side = "left" | |
# use different length sentences to test batching | |
sentences = [ | |
"Hello, my dog is a little", | |
"Today, I", | |
] | |
inputs = tokenizer(sentences, return_tensors="jax", padding=True) | |
input_ids = inputs["input_ids"] | |
outputs = model.generate(input_ids=input_ids, attention_mask=inputs["attention_mask"], trace=False) | |
inputs_non_padded = tokenizer(sentences[0], return_tensors="jax").input_ids | |
output_non_padded = model.generate(input_ids=inputs_non_padded) | |
num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].sum() | |
inputs_padded = tokenizer(sentences[1], return_tensors="jax").input_ids | |
output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings) | |
batch_out_sentence = tokenizer.batch_decode(outputs[0], skip_special_tokens=True) | |
non_padded_sentence = tokenizer.decode(output_non_padded[0][0], skip_special_tokens=True) | |
padded_sentence = tokenizer.decode(output_padded[0][0], skip_special_tokens=True) | |
expected_output_sentence = [ | |
"Hello, my dog is a little bit of a dork.\nI'm a little bit", | |
"Today, I was in the middle of a conversation with a friend about the", | |
] | |
self.assertListEqual(expected_output_sentence, batch_out_sentence) | |
self.assertListEqual(batch_out_sentence, [non_padded_sentence, padded_sentence]) | |