Spaces:
Runtime error
Runtime error
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import is_torch_available | |
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device | |
if is_torch_available(): | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
class MT5IntegrationTest(unittest.TestCase): | |
def test_small_integration_test(self): | |
""" | |
For comparision run: | |
>>> import t5 # pip install t5==0.7.1 | |
>>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary | |
>>> path_to_mtf_small_mt5_checkpoint = '<fill_in>' | |
>>> path_to_mtf_small_mt5_spm_model_path = '<fill_in>' | |
>>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_mt5_checkpoint, batch_size=1, tpu=None) | |
>>> vocab = SentencePieceVocabulary(path_to_mtf_small_mt5_spm_model_path) | |
>>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab) | |
""" | |
model = AutoModelForSeq2SeqLM.from_pretrained("google/mt5-small", return_dict=True).to(torch_device) | |
tokenizer = AutoTokenizer.from_pretrained("google/mt5-small") | |
input_ids = tokenizer("Hello there", return_tensors="pt").input_ids | |
labels = tokenizer("Hi I am", return_tensors="pt").input_ids | |
loss = model(input_ids.to(torch_device), labels=labels.to(torch_device)).loss | |
mtf_score = -(labels.shape[-1] * loss.item()) | |
EXPECTED_SCORE = -84.9127 | |
self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4) | |