Spaces:
Runtime error
Runtime error
# Copyright 2021 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import is_flax_available | |
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow | |
if is_flax_available(): | |
import optax | |
from flax.training.common_utils import onehot | |
from transformers import AutoTokenizer, FlaxMT5ForConditionalGeneration | |
from transformers.models.t5.modeling_flax_t5 import shift_tokens_right | |
class MT5IntegrationTest(unittest.TestCase): | |
def test_small_integration_test(self): | |
""" | |
For comparision run: | |
>>> import t5 # pip install t5==0.7.1 | |
>>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary | |
>>> path_to_mtf_small_mt5_checkpoint = '<fill_in>' | |
>>> path_to_mtf_small_mt5_spm_model_path = '<fill_in>' | |
>>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_mt5_checkpoint, batch_size=1, tpu=None) | |
>>> vocab = SentencePieceVocabulary(path_to_mtf_small_mt5_spm_model_path) | |
>>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab) | |
""" | |
model = FlaxMT5ForConditionalGeneration.from_pretrained("google/mt5-small") | |
tokenizer = AutoTokenizer.from_pretrained("google/mt5-small") | |
input_ids = tokenizer("Hello there", return_tensors="np").input_ids | |
labels = tokenizer("Hi I am", return_tensors="np").input_ids | |
decoder_input_ids = shift_tokens_right(labels, model.config.pad_token_id, model.config.decoder_start_token_id) | |
logits = model(input_ids, decoder_input_ids=decoder_input_ids).logits | |
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])).mean() | |
mtf_score = -(labels.shape[-1] * loss.item()) | |
EXPECTED_SCORE = -84.9127 | |
self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4) | |