Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch MobileViT model. """ | |
import inspect | |
import unittest | |
from transformers import MobileViTConfig | |
from transformers.testing_utils import require_torch, require_vision, slow, torch_device | |
from transformers.utils import cached_property, is_torch_available, is_vision_available | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel | |
from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST | |
if is_vision_available(): | |
from PIL import Image | |
from transformers import MobileViTFeatureExtractor | |
class MobileViTConfigTester(ConfigTester): | |
def create_and_test_config_common_properties(self): | |
config = self.config_class(**self.inputs_dict) | |
self.parent.assertTrue(hasattr(config, "hidden_sizes")) | |
self.parent.assertTrue(hasattr(config, "neck_hidden_sizes")) | |
self.parent.assertTrue(hasattr(config, "num_attention_heads")) | |
class MobileViTModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
image_size=32, | |
patch_size=2, | |
num_channels=3, | |
last_hidden_size=640, | |
num_attention_heads=4, | |
hidden_act="silu", | |
conv_kernel_size=3, | |
output_stride=32, | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
classifier_dropout_prob=0.1, | |
initializer_range=0.02, | |
is_training=True, | |
use_labels=True, | |
num_labels=10, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.last_hidden_size = last_hidden_size | |
self.num_attention_heads = num_attention_heads | |
self.hidden_act = hidden_act | |
self.conv_kernel_size = conv_kernel_size | |
self.output_stride = output_stride | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.classifier_dropout_prob = classifier_dropout_prob | |
self.use_labels = use_labels | |
self.is_training = is_training | |
self.num_labels = num_labels | |
self.initializer_range = initializer_range | |
self.scope = scope | |
def prepare_config_and_inputs(self): | |
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
labels = None | |
pixel_labels = None | |
if self.use_labels: | |
labels = ids_tensor([self.batch_size], self.num_labels) | |
pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) | |
config = self.get_config() | |
return config, pixel_values, labels, pixel_labels | |
def get_config(self): | |
return MobileViTConfig( | |
image_size=self.image_size, | |
patch_size=self.patch_size, | |
num_channels=self.num_channels, | |
num_attention_heads=self.num_attention_heads, | |
hidden_act=self.hidden_act, | |
conv_kernel_size=self.conv_kernel_size, | |
output_stride=self.output_stride, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
classifier_dropout_prob=self.classifier_dropout_prob, | |
initializer_range=self.initializer_range, | |
) | |
def create_and_check_model(self, config, pixel_values, labels, pixel_labels): | |
model = MobileViTModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values) | |
self.parent.assertEqual( | |
result.last_hidden_state.shape, | |
( | |
self.batch_size, | |
self.last_hidden_size, | |
self.image_size // self.output_stride, | |
self.image_size // self.output_stride, | |
), | |
) | |
def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels): | |
config.num_labels = self.num_labels | |
model = MobileViTForImageClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values, labels=labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels, pixel_labels): | |
config.num_labels = self.num_labels | |
model = MobileViTForSemanticSegmentation(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values) | |
self.parent.assertEqual( | |
result.logits.shape, | |
( | |
self.batch_size, | |
self.num_labels, | |
self.image_size // self.output_stride, | |
self.image_size // self.output_stride, | |
), | |
) | |
result = model(pixel_values, labels=pixel_labels) | |
self.parent.assertEqual( | |
result.logits.shape, | |
( | |
self.batch_size, | |
self.num_labels, | |
self.image_size // self.output_stride, | |
self.image_size // self.output_stride, | |
), | |
) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, pixel_values, labels, pixel_labels = config_and_inputs | |
inputs_dict = {"pixel_values": pixel_values} | |
return config, inputs_dict | |
class MobileViTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
""" | |
Here we also overwrite some of the tests of test_modeling_common.py, as MobileViT does not use input_ids, inputs_embeds, | |
attention_mask and seq_length. | |
""" | |
all_model_classes = ( | |
(MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) | |
if is_torch_available() | |
else () | |
) | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": MobileViTModel, | |
"image-classification": MobileViTForImageClassification, | |
"image-segmentation": MobileViTForSemanticSegmentation, | |
} | |
if is_torch_available() | |
else {} | |
) | |
test_pruning = False | |
test_resize_embeddings = False | |
test_head_masking = False | |
has_attentions = False | |
def setUp(self): | |
self.model_tester = MobileViTModelTester(self) | |
self.config_tester = MobileViTConfigTester(self, config_class=MobileViTConfig, has_text_modality=False) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_inputs_embeds(self): | |
pass | |
def test_model_common_attributes(self): | |
pass | |
def test_attention_outputs(self): | |
pass | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["pixel_values"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_hidden_states_output(self): | |
def check_hidden_states_output(inputs_dict, config, model_class): | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
hidden_states = outputs.hidden_states | |
expected_num_stages = 5 | |
self.assertEqual(len(hidden_states), expected_num_stages) | |
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width) | |
# with the width and height being successively divided by 2. | |
divisor = 2 | |
for i in range(len(hidden_states)): | |
self.assertListEqual( | |
list(hidden_states[i].shape[-2:]), | |
[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], | |
) | |
divisor *= 2 | |
self.assertEqual(self.model_tester.output_stride, divisor // 2) | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
inputs_dict["output_hidden_states"] = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
# check that output_hidden_states also work using config | |
del inputs_dict["output_hidden_states"] | |
config.output_hidden_states = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
def test_for_image_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_image_classification(*config_and_inputs) | |
def test_for_semantic_segmentation(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = MobileViTModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
# We will verify our results on an image of cute cats | |
def prepare_img(): | |
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
return image | |
class MobileViTModelIntegrationTest(unittest.TestCase): | |
def default_feature_extractor(self): | |
return MobileViTFeatureExtractor.from_pretrained("apple/mobilevit-xx-small") if is_vision_available() else None | |
def test_inference_image_classification_head(self): | |
model = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small").to(torch_device) | |
feature_extractor = self.default_feature_extractor | |
image = prepare_img() | |
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# verify the logits | |
expected_shape = torch.Size((1, 1000)) | |
self.assertEqual(outputs.logits.shape, expected_shape) | |
expected_slice = torch.tensor([-1.9364, -1.2327, -0.4653]).to(torch_device) | |
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) | |
def test_inference_semantic_segmentation(self): | |
model = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small") | |
model = model.to(torch_device) | |
feature_extractor = MobileViTFeatureExtractor.from_pretrained("apple/deeplabv3-mobilevit-xx-small") | |
image = prepare_img() | |
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
# verify the logits | |
expected_shape = torch.Size((1, 21, 32, 32)) | |
self.assertEqual(logits.shape, expected_shape) | |
expected_slice = torch.tensor( | |
[ | |
[[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], | |
[[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], | |
[[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], | |
], | |
device=torch_device, | |
) | |
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4)) | |
def test_post_processing_semantic_segmentation(self): | |
model = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small") | |
model = model.to(torch_device) | |
feature_extractor = MobileViTFeatureExtractor.from_pretrained("apple/deeplabv3-mobilevit-xx-small") | |
image = prepare_img() | |
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
outputs.logits = outputs.logits.detach().cpu() | |
segmentation = feature_extractor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(50, 60)]) | |
expected_shape = torch.Size((50, 60)) | |
self.assertEqual(segmentation[0].shape, expected_shape) | |
segmentation = feature_extractor.post_process_semantic_segmentation(outputs=outputs) | |
expected_shape = torch.Size((32, 32)) | |
self.assertEqual(segmentation[0].shape, expected_shape) | |