Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import MegaConfig, is_torch_available | |
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device | |
from ...generation.test_utils import GenerationTesterMixin | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
MegaForCausalLM, | |
MegaForMaskedLM, | |
MegaForMultipleChoice, | |
MegaForQuestionAnswering, | |
MegaForSequenceClassification, | |
MegaForTokenClassification, | |
MegaModel, | |
) | |
from transformers.models.mega.modeling_mega import MEGA_PRETRAINED_MODEL_ARCHIVE_LIST | |
class MegaModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_labels=True, | |
vocab_size=99, | |
hidden_size=32, | |
num_hidden_layers=5, | |
intermediate_size=37, | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_positions=1024, | |
bidirectional=False, # needed for decoding, and can't modify common generation tests; test separately by overriding | |
ema_projection_size=16, | |
shared_representation_size=64, | |
use_chunking=False, | |
chunk_size=32, | |
attention_activation="softmax", | |
use_normalized_ffn=True, | |
nffn_hidden_size=24, | |
add_token_type_embeddings=True, | |
type_vocab_size=2, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
num_labels=3, | |
num_choices=4, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.add_token_type_embeddings = add_token_type_embeddings | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.intermediate_size = intermediate_size | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_positions = max_positions | |
self.bidirectional = bidirectional | |
self.ema_projection_size = ema_projection_size | |
self.shared_representation_size = shared_representation_size | |
self.use_chunking = use_chunking | |
self.chunk_size = chunk_size | |
self.attention_activation = attention_activation | |
self.use_normalized_ffn = use_normalized_ffn | |
self.nffn_hidden_size = nffn_hidden_size | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.num_labels = num_labels | |
self.num_choices = num_choices | |
self.scope = scope | |
self.num_attention_heads = 1 | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
token_type_ids = None | |
if self.add_token_type_embeddings: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
sequence_labels = None | |
token_labels = None | |
choice_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = self.get_config() | |
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
def get_config(self): | |
return MegaConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
intermediate_size=self.intermediate_size, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
type_vocab_size=self.type_vocab_size, | |
initializer_range=self.initializer_range, | |
# added args | |
add_token_type_embeddings=self.add_token_type_embeddings, | |
max_positions=self.max_positions, | |
bidirectional=self.bidirectional, | |
ema_projection_size=self.ema_projection_size, | |
shared_representation_size=self.shared_representation_size, | |
use_chunking=self.use_chunking, | |
chunk_size=self.chunk_size, | |
attention_activation=self.attention_activation, | |
use_normalized_ffn=self.use_normalized_ffn, | |
nffn_hidden_size=self.nffn_hidden_size, | |
) | |
def get_pipeline_config(self): | |
config = self.get_config() | |
config.vocab_size = 300 | |
return config | |
def prepare_config_and_inputs_for_decoder(self): | |
( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = self.prepare_config_and_inputs() | |
config.is_decoder = True | |
config.bidirectional = False | |
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) | |
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) | |
return ( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) | |
def create_and_check_model( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = MegaModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
result = model(input_ids, token_type_ids=token_type_ids) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
def create_and_check_model_as_decoder( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
): | |
config.add_cross_attention = True | |
model = MegaModel(config) | |
model.to(torch_device) | |
model.eval() | |
result = model( | |
input_ids, | |
attention_mask=input_mask, | |
token_type_ids=token_type_ids, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
) | |
result = model( | |
input_ids, | |
attention_mask=input_mask, | |
token_type_ids=token_type_ids, | |
encoder_hidden_states=encoder_hidden_states, | |
) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
def create_and_check_for_causal_lm( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
): | |
model = MegaForCausalLM(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def create_and_check_decoder_model_past_large_inputs( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
): | |
config.is_decoder = True | |
config.bidirectional = False | |
config.add_cross_attention = True | |
model = MegaForCausalLM(config=config).to(torch_device).eval() | |
# make sure that ids don't start with pad token | |
mask = input_ids.ne(config.pad_token_id).long() | |
input_ids = input_ids * mask | |
# first forward pass | |
outputs = model( | |
input_ids, | |
attention_mask=input_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
use_cache=True, | |
) | |
past_key_values = outputs.past_key_values | |
# create hypothetical multiple next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
# make sure that ids don't start with pad token | |
mask = next_tokens.ne(config.pad_token_id).long() | |
next_tokens = next_tokens * mask | |
next_mask = ids_tensor((self.batch_size, 1), vocab_size=2) | |
# append to next input_ids and | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) | |
output_from_no_past = model( | |
next_input_ids, | |
attention_mask=next_attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
output_hidden_states=True, | |
)["hidden_states"][0] | |
output_from_past = model( | |
next_tokens, | |
attention_mask=next_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
past_key_values=past_key_values, | |
output_hidden_states=True, | |
)["hidden_states"][0] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -1:, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() | |
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
def create_and_check_for_masked_lm( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = MegaForMaskedLM(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def create_and_check_for_token_classification( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.num_labels = self.num_labels | |
model = MegaForTokenClassification(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
def create_and_check_for_multiple_choice( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.num_choices = self.num_choices | |
model = MegaForMultipleChoice(config=config) | |
model.to(torch_device) | |
model.eval() | |
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
result = model( | |
multiple_choice_inputs_ids, | |
attention_mask=multiple_choice_input_mask, | |
token_type_ids=multiple_choice_token_type_ids, | |
labels=choice_labels, | |
) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) | |
def create_and_check_for_question_answering( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = MegaForQuestionAnswering(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model( | |
input_ids, | |
attention_mask=input_mask, | |
token_type_ids=token_type_ids, | |
start_positions=sequence_labels, | |
end_positions=sequence_labels, | |
) | |
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
# extra checks for Mega-specific model functionality | |
def create_and_check_bidirectionality( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.bidirectional = True | |
model = MegaModel(config) | |
model.to(torch_device) | |
model.eval() | |
# no mask | |
result = model(input_ids) | |
# with mask & token types | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
self.parent.assertEqual(result[0].shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
def check_chunking_shorter_sequence( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.use_chunking = True | |
config.chunk_size = input_ids.size(1) + 25 | |
model = MegaModel(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
self.parent.assertEqual(result[0].shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
def check_chunking_longer_sequence( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.use_chunking = True | |
# we want the chunk size to be < sequence length, and the sequence length to be a multiple of chunk size | |
config.chunk_size = input_ids.size(1) * 2 | |
model = MegaModel(config) | |
model.to(torch_device) | |
model.eval() | |
result = model( | |
input_ids.repeat(1, 8), | |
) | |
self.parent.assertEqual(result[0].shape, (self.batch_size, self.seq_length * 8, self.hidden_size)) | |
def check_laplace_self_attention( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.attention_activation = "laplace" | |
model = MegaModel(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
self.parent.assertEqual(result[0].shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
def check_relu2_self_attention( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.attention_activation = "relu2" | |
model = MegaModel(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
self.parent.assertEqual(result[0].shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
def check_sequence_length_beyond_max_positions( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.max_positions = self.seq_length - 2 | |
model = MegaModel(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
self.parent.assertEqual(result[0].shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} | |
return config, inputs_dict | |
class MegaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
( | |
MegaForCausalLM, | |
MegaForMaskedLM, | |
MegaModel, | |
MegaForSequenceClassification, | |
MegaForTokenClassification, | |
MegaForMultipleChoice, | |
MegaForQuestionAnswering, | |
) | |
if is_torch_available() | |
else () | |
) | |
all_generative_model_classes = (MegaForCausalLM,) if is_torch_available() else () | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": MegaModel, | |
"fill-mask": MegaForMaskedLM, | |
"question-answering": MegaForQuestionAnswering, | |
"text-classification": MegaForSequenceClassification, | |
"text-generation": MegaForCausalLM, | |
"token-classification": MegaForTokenClassification, | |
"zero-shot": MegaForSequenceClassification, | |
} | |
if is_torch_available() | |
else {} | |
) | |
fx_compatible = False | |
test_head_masking = False | |
test_pruning = False | |
def setUp(self): | |
self.model_tester = MegaModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=MegaConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_model_as_decoder(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() | |
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) | |
def test_model_as_decoder_with_default_input_mask(self): | |
# This regression test was failing with PyTorch < 1.3 | |
( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) = self.model_tester.prepare_config_and_inputs_for_decoder() | |
input_mask = None | |
self.model_tester.create_and_check_model_as_decoder( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) | |
def test_for_causal_lm(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() | |
self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) | |
def test_decoder_model_past_with_large_inputs(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() | |
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) | |
def test_for_masked_lm(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) | |
def test_for_token_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_token_classification(*config_and_inputs) | |
def test_for_multiple_choice(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) | |
def test_for_question_answering(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_question_answering(*config_and_inputs) | |
def test_for_bidirectionality(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_bidirectionality(*config_and_inputs) | |
def test_for_chunking_shorter_sequence(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.check_chunking_shorter_sequence(*config_and_inputs) | |
def test_for_chunking_longer_sequence(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.check_chunking_longer_sequence(*config_and_inputs) | |
def test_for_laplace_attention(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.check_laplace_self_attention(*config_and_inputs) | |
def test_for_relu2_attention(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.check_relu2_self_attention(*config_and_inputs) | |
def test_for_sequence_length_beyond_max_positions(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.check_sequence_length_beyond_max_positions(*config_and_inputs) | |
def test_generate_fp16(self): | |
config, input_ids, _, attention_mask, *_ = self.model_tester.prepare_config_and_inputs_for_decoder() | |
# attention_mask = torch.LongTensor(input_ids.ne(1)).to(torch_device) | |
model = MegaForCausalLM(config).eval().to(torch_device) | |
if torch_device == "cuda": | |
model.half() | |
model.generate(input_ids, attention_mask=attention_mask) | |
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) | |
def test_sequence_classification_model(self): | |
config, input_ids, _, attention_mask, *_ = self.model_tester.prepare_config_and_inputs() | |
config.num_labels = self.model_tester.num_labels | |
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) | |
model = MegaForSequenceClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) | |
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) | |
def test_sequence_classification_model_for_multi_label(self): | |
config, input_ids, _, attention_mask, *_ = self.model_tester.prepare_config_and_inputs() | |
config.num_labels = self.model_tester.num_labels | |
config.problem_type = "multi_label_classification" | |
sequence_labels = ids_tensor( | |
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size | |
).to(torch.float) | |
model = MegaForSequenceClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) | |
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) | |
def test_model_from_pretrained(self): | |
for model_name in MEGA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = MegaModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
def test_cpu_offload(self): | |
super().test_cpu_offload() | |
def test_disk_offload(self): | |
super().test_disk_offload() | |
def test_model_parallelism(self): | |
super().test_model_parallelism() | |
def test_multi_gpu_data_parallel_forward(self): | |
super().test_multi_gpu_data_parallel_forward() | |
def test_torchscript_simple(self): | |
super().test_torchscript_simple() | |
def test_torchscript_output_hidden_state(self): | |
super().test_torchscript_output_hidden_state() | |
def test_torchscript_output_attentions(self): | |
super().test_torchscript_output_attentions() | |
class MegaModelIntegrationTest(TestCasePlus): | |
def test_inference_masked_lm(self): | |
model = MegaForMaskedLM.from_pretrained("mnaylor/mega-base-wikitext") | |
input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) | |
with torch.no_grad(): | |
output = model(input_ids)[0] | |
expected_shape = torch.Size((1, 11, 50265)) | |
self.assertEqual(output.shape, expected_shape) | |
# compare the actual values for a slice. | |
expected_slice = torch.tensor( | |
[[[67.8389, 10.1470, -32.7148], [-11.1655, 29.1152, 23.1304], [-3.8015, 66.0397, 29.6733]]] | |
) | |
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) | |
def test_inference_no_head(self): | |
model = MegaModel.from_pretrained("mnaylor/mega-base-wikitext") | |
input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) | |
with torch.no_grad(): | |
output = model(input_ids)[0] | |
expected_shape = torch.Size((1, 11, 128)) | |
self.assertEqual(output.shape, expected_shape) | |
# compare the actual values for a slice. taken from output[:, :3, :3] | |
expected_slice = torch.tensor( | |
[[[1.1767, -0.6349, 2.8494], [-0.5109, -0.7745, 1.9495], [-0.3287, -0.2111, 3.3367]]] | |
) | |
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) | |