Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors, The Hugging Face Team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import LayoutLMConfig, is_torch_available | |
from transformers.testing_utils import require_torch, slow, torch_device | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, ids_tensor | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
LayoutLMForMaskedLM, | |
LayoutLMForQuestionAnswering, | |
LayoutLMForSequenceClassification, | |
LayoutLMForTokenClassification, | |
LayoutLMModel, | |
) | |
class LayoutLMModelTester: | |
"""You can also import this e.g from .test_modeling_layoutlm import LayoutLMModelTester""" | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_token_type_ids=True, | |
use_labels=True, | |
vocab_size=99, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
num_labels=3, | |
num_choices=4, | |
scope=None, | |
range_bbox=1000, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_token_type_ids = use_token_type_ids | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.num_labels = num_labels | |
self.num_choices = num_choices | |
self.scope = scope | |
self.range_bbox = range_bbox | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
bbox = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox) | |
# Ensure that bbox is legal | |
for i in range(bbox.shape[0]): | |
for j in range(bbox.shape[1]): | |
if bbox[i, j, 3] < bbox[i, j, 1]: | |
t = bbox[i, j, 3] | |
bbox[i, j, 3] = bbox[i, j, 1] | |
bbox[i, j, 1] = t | |
if bbox[i, j, 2] < bbox[i, j, 0]: | |
t = bbox[i, j, 2] | |
bbox[i, j, 2] = bbox[i, j, 0] | |
bbox[i, j, 0] = t | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
sequence_labels = None | |
token_labels = None | |
choice_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = self.get_config() | |
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
def get_config(self): | |
return LayoutLMConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
initializer_range=self.initializer_range, | |
) | |
def create_and_check_model( | |
self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = LayoutLMModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids) | |
result = model(input_ids, bbox, token_type_ids=token_type_ids) | |
result = model(input_ids, bbox) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
def create_and_check_for_masked_lm( | |
self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = LayoutLMForMaskedLM(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def create_and_check_for_sequence_classification( | |
self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.num_labels = self.num_labels | |
model = LayoutLMForSequenceClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model( | |
input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels | |
) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
def create_and_check_for_token_classification( | |
self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.num_labels = self.num_labels | |
model = LayoutLMForTokenClassification(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
def create_and_check_for_question_answering( | |
self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = LayoutLMForQuestionAnswering(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model( | |
input_ids, | |
bbox=bbox, | |
attention_mask=input_mask, | |
token_type_ids=token_type_ids, | |
start_positions=sequence_labels, | |
end_positions=sequence_labels, | |
) | |
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
bbox, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = config_and_inputs | |
inputs_dict = { | |
"input_ids": input_ids, | |
"bbox": bbox, | |
"token_type_ids": token_type_ids, | |
"attention_mask": input_mask, | |
} | |
return config, inputs_dict | |
class LayoutLMModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
( | |
LayoutLMModel, | |
LayoutLMForMaskedLM, | |
LayoutLMForSequenceClassification, | |
LayoutLMForTokenClassification, | |
LayoutLMForQuestionAnswering, | |
) | |
if is_torch_available() | |
else None | |
) | |
pipeline_model_mapping = ( | |
{ | |
"document-question-answering": LayoutLMForQuestionAnswering, | |
"feature-extraction": LayoutLMModel, | |
"fill-mask": LayoutLMForMaskedLM, | |
"text-classification": LayoutLMForSequenceClassification, | |
"token-classification": LayoutLMForTokenClassification, | |
"zero-shot": LayoutLMForSequenceClassification, | |
} | |
if is_torch_available() | |
else {} | |
) | |
fx_compatible = True | |
# TODO: Fix the failed tests | |
def is_pipeline_test_to_skip( | |
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name | |
): | |
if ( | |
pipeline_test_casse_name == "DocumentQuestionAnsweringPipelineTests" | |
and tokenizer_name is not None | |
and not tokenizer_name.endswith("Fast") | |
): | |
# This pipeline uses `sequence_ids()` which is only available for fast tokenizers. | |
return True | |
return False | |
def setUp(self): | |
self.model_tester = LayoutLMModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=LayoutLMConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_model_various_embeddings(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
for type in ["absolute", "relative_key", "relative_key_query"]: | |
config_and_inputs[0].position_embedding_type = type | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_for_masked_lm(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) | |
def test_for_sequence_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) | |
def test_for_token_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_token_classification(*config_and_inputs) | |
def test_for_question_answering(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_question_answering(*config_and_inputs) | |
def prepare_layoutlm_batch_inputs(): | |
# Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: | |
# fmt: off | |
input_ids = torch.tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]],device=torch_device) # noqa: E231 | |
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],],device=torch_device) # noqa: E231 | |
bbox = torch.tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]],device=torch_device) # noqa: E231 | |
token_type_ids = torch.tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]],device=torch_device) # noqa: E231 | |
# these are sequence labels (i.e. at the token level) | |
labels = torch.tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]],device=torch_device) # noqa: E231 | |
# fmt: on | |
return input_ids, attention_mask, bbox, token_type_ids, labels | |
class LayoutLMModelIntegrationTest(unittest.TestCase): | |
def test_forward_pass_no_head(self): | |
model = LayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased").to(torch_device) | |
input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs() | |
# forward pass | |
outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids) | |
# test the sequence output on [0, :3, :3] | |
expected_slice = torch.tensor( | |
[[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]], | |
device=torch_device, | |
) | |
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-3)) | |
# test the pooled output on [1, :3] | |
expected_slice = torch.tensor([-0.6580, -0.0214, 0.8552], device=torch_device) | |
self.assertTrue(torch.allclose(outputs.pooler_output[1, :3], expected_slice, atol=1e-3)) | |
def test_forward_pass_sequence_classification(self): | |
# initialize model with randomly initialized sequence classification head | |
model = LayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=2).to( | |
torch_device | |
) | |
input_ids, attention_mask, bbox, token_type_ids, _ = prepare_layoutlm_batch_inputs() | |
# forward pass | |
outputs = model( | |
input_ids=input_ids, | |
bbox=bbox, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
labels=torch.tensor([1, 1], device=torch_device), | |
) | |
# test whether we get a loss as a scalar | |
loss = outputs.loss | |
expected_shape = torch.Size([]) | |
self.assertEqual(loss.shape, expected_shape) | |
# test the shape of the logits | |
logits = outputs.logits | |
expected_shape = torch.Size((2, 2)) | |
self.assertEqual(logits.shape, expected_shape) | |
def test_forward_pass_token_classification(self): | |
# initialize model with randomly initialized token classification head | |
model = LayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=13).to( | |
torch_device | |
) | |
input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs() | |
# forward pass | |
outputs = model( | |
input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, labels=labels | |
) | |
# test the loss calculation to be around 2.65 | |
# expected_loss = torch.tensor(2.65, device=torch_device) | |
# The loss is currently somewhat random and can vary between 0.1-0.3 atol. | |
# self.assertTrue(torch.allclose(outputs.loss, expected_loss, atol=0.1)) | |
# test the shape of the logits | |
logits = outputs.logits | |
expected_shape = torch.Size((2, 25, 13)) | |
self.assertEqual(logits.shape, expected_shape) | |
def test_forward_pass_question_answering(self): | |
# initialize model with randomly initialized token classification head | |
model = LayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased").to(torch_device) | |
input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs() | |
# forward pass | |
outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids) | |
# test the shape of the logits | |
expected_shape = torch.Size((2, 25)) | |
self.assertEqual(outputs.start_logits.shape, expected_shape) | |
self.assertEqual(outputs.end_logits.shape, expected_shape) | |