Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import copy | |
import inspect | |
import os | |
import tempfile | |
import unittest | |
from transformers import ImageGPTConfig | |
from transformers.testing_utils import require_torch, require_vision, slow, torch_device | |
from transformers.utils import cached_property, is_torch_available, is_vision_available | |
from ...generation.test_utils import GenerationTesterMixin | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ( | |
ModelTesterMixin, | |
_config_zero_init, | |
floats_tensor, | |
ids_tensor, | |
random_attention_mask, | |
) | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
IMAGEGPT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
ImageGPTForCausalImageModeling, | |
ImageGPTForImageClassification, | |
ImageGPTModel, | |
) | |
if is_vision_available(): | |
from PIL import Image | |
from transformers import ImageGPTFeatureExtractor | |
class ImageGPTModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=14, | |
seq_length=7, | |
is_training=True, | |
use_token_type_ids=True, | |
use_input_mask=True, | |
use_labels=True, | |
use_mc_token_ids=True, | |
vocab_size=99, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
num_labels=3, | |
num_choices=4, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_token_type_ids = use_token_type_ids | |
self.use_input_mask = use_input_mask | |
self.use_labels = use_labels | |
self.use_mc_token_ids = use_mc_token_ids | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.num_labels = num_labels | |
self.num_choices = num_choices | |
self.scope = None | |
def get_large_model_config(self): | |
return ImageGPTConfig.from_pretrained("imagegpt") | |
def prepare_config_and_inputs( | |
self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False | |
): | |
pixel_values = ids_tensor([self.batch_size, self.seq_length], self.vocab_size - 1) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
mc_token_ids = None | |
if self.use_mc_token_ids: | |
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) | |
sequence_labels = None | |
token_labels = None | |
choice_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = self.get_config( | |
gradient_checkpointing=gradient_checkpointing, | |
scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx, | |
reorder_and_upcast_attn=reorder_and_upcast_attn, | |
) | |
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) | |
return ( | |
config, | |
pixel_values, | |
input_mask, | |
head_mask, | |
token_type_ids, | |
mc_token_ids, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) | |
def get_config( | |
self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False | |
): | |
return ImageGPTConfig( | |
vocab_size=self.vocab_size, | |
n_embd=self.hidden_size, | |
n_layer=self.num_hidden_layers, | |
n_head=self.num_attention_heads, | |
n_inner=self.intermediate_size, | |
activation_function=self.hidden_act, | |
resid_pdrop=self.hidden_dropout_prob, | |
attn_pdrop=self.attention_probs_dropout_prob, | |
n_positions=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
initializer_range=self.initializer_range, | |
use_cache=True, | |
gradient_checkpointing=gradient_checkpointing, | |
scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx, | |
reorder_and_upcast_attn=reorder_and_upcast_attn, | |
) | |
def get_pipeline_config(self): | |
config = self.get_config() | |
config.vocab_size = 513 | |
config.max_position_embeddings = 1024 | |
return config | |
def prepare_config_and_inputs_for_decoder(self): | |
( | |
config, | |
pixel_values, | |
input_mask, | |
head_mask, | |
token_type_ids, | |
mc_token_ids, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = self.prepare_config_and_inputs() | |
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) | |
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) | |
return ( | |
config, | |
pixel_values, | |
input_mask, | |
head_mask, | |
token_type_ids, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) | |
def create_and_check_imagegpt_model(self, config, pixel_values, input_mask, head_mask, token_type_ids, *args): | |
model = ImageGPTModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values, token_type_ids=token_type_ids, head_mask=head_mask) | |
result = model(pixel_values, token_type_ids=token_type_ids) | |
result = model(pixel_values) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
self.parent.assertEqual(len(result.past_key_values), config.n_layer) | |
def create_and_check_lm_head_model(self, config, pixel_values, input_mask, head_mask, token_type_ids, *args): | |
model = ImageGPTForCausalImageModeling(config) | |
model.to(torch_device) | |
model.eval() | |
labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size - 1) | |
result = model(pixel_values, token_type_ids=token_type_ids, labels=labels) | |
self.parent.assertEqual(result.loss.shape, ()) | |
# ImageGPTForCausalImageModeling doens't have tied input- and output embeddings | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size - 1)) | |
def create_and_check_imagegpt_for_image_classification( | |
self, config, pixel_values, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args | |
): | |
config.num_labels = self.num_labels | |
model = ImageGPTForImageClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
pixel_values, | |
input_mask, | |
head_mask, | |
token_type_ids, | |
mc_token_ids, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = config_and_inputs | |
inputs_dict = { | |
"pixel_values": pixel_values, | |
"token_type_ids": token_type_ids, | |
"head_mask": head_mask, | |
} | |
return config, inputs_dict | |
class ImageGPTModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
(ImageGPTForCausalImageModeling, ImageGPTForImageClassification, ImageGPTModel) if is_torch_available() else () | |
) | |
all_generative_model_classes = (ImageGPTForCausalImageModeling,) if is_torch_available() else () | |
pipeline_model_mapping = ( | |
{"feature-extraction": ImageGPTModel, "image-classification": ImageGPTForImageClassification} | |
if is_torch_available() | |
else {} | |
) | |
test_missing_keys = False | |
input_name = "pixel_values" | |
# as ImageGPTForImageClassification isn't included in any auto mapping, we add labels here | |
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): | |
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) | |
if return_labels: | |
if model_class.__name__ == "ImageGPTForImageClassification": | |
inputs_dict["labels"] = torch.zeros( | |
self.model_tester.batch_size, dtype=torch.long, device=torch_device | |
) | |
return inputs_dict | |
# we overwrite the _check_scores method of GenerationTesterMixin, as ImageGPTForCausalImageModeling doesn't have tied input- and output embeddings | |
def _check_scores(self, batch_size, scores, length, config): | |
expected_shape = (batch_size, config.vocab_size - 1) | |
self.assertIsInstance(scores, tuple) | |
self.assertEqual(len(scores), length) | |
self.assertListEqual([iter_scores.shape for iter_scores in scores], [expected_shape] * len(scores)) | |
def setUp(self): | |
self.model_tester = ImageGPTModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=ImageGPTConfig, n_embd=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_imagegpt_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_imagegpt_model(*config_and_inputs) | |
def test_imagegpt_causal_lm(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_lm_head_model(*config_and_inputs) | |
def test_imagegpt_image_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_imagegpt_for_image_classification(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in IMAGEGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = ImageGPTModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["input_ids"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_resize_tokens_embeddings(self): | |
( | |
original_config, | |
inputs_dict, | |
) = self.model_tester.prepare_config_and_inputs_for_common() | |
if not self.test_resize_embeddings: | |
return | |
for model_class in self.all_model_classes: | |
config = copy.deepcopy(original_config) | |
model = model_class(config) | |
model.to(torch_device) | |
if self.model_tester.is_training is False: | |
model.eval() | |
model_vocab_size = config.vocab_size | |
# Retrieve the embeddings and clone theme | |
model_embed = model.resize_token_embeddings(model_vocab_size) | |
cloned_embeddings = model_embed.weight.clone() | |
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size | |
model_embed = model.resize_token_embeddings(model_vocab_size + 10) | |
self.assertEqual(model.config.vocab_size, model_vocab_size + 10) | |
# Check that it actually resizes the embeddings matrix | |
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) | |
# Check that the model can still do a forward pass successfully (every parameter should be resized) | |
model(**self._prepare_for_class(inputs_dict, model_class)) | |
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size | |
model_embed = model.resize_token_embeddings(model_vocab_size - 15) | |
self.assertEqual(model.config.vocab_size, model_vocab_size - 15) | |
# Check that it actually resizes the embeddings matrix | |
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15) | |
# Check that the model can still do a forward pass successfully (every parameter should be resized) | |
# Input ids should be clamped to the maximum size of the vocabulary | |
inputs_dict["pixel_values"].clamp_(max=model_vocab_size - 15 - 1) | |
# Check that adding and removing tokens has not modified the first part of the embedding matrix. | |
models_equal = True | |
for p1, p2 in zip(cloned_embeddings, model_embed.weight): | |
if p1.data.ne(p2.data).sum() > 0: | |
models_equal = False | |
self.assertTrue(models_equal) | |
def test_resize_embeddings_untied(self): | |
( | |
original_config, | |
inputs_dict, | |
) = self.model_tester.prepare_config_and_inputs_for_common() | |
if not self.test_resize_embeddings: | |
return | |
original_config.tie_word_embeddings = False | |
# if model cannot untied embeddings -> leave test | |
if original_config.tie_word_embeddings: | |
return | |
for model_class in self.all_model_classes: | |
config = copy.deepcopy(original_config) | |
model = model_class(config).to(torch_device) | |
# if no output embeddings -> leave test | |
if model.get_output_embeddings() is None: | |
continue | |
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size | |
model_vocab_size = config.vocab_size | |
model.resize_token_embeddings(model_vocab_size + 10) | |
self.assertEqual(model.config.vocab_size, model_vocab_size + 10) | |
output_embeds = model.get_output_embeddings() | |
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10) | |
# Check bias if present | |
if output_embeds.bias is not None: | |
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10) | |
# Check that the model can still do a forward pass successfully (every parameter should be resized) | |
model(**self._prepare_for_class(inputs_dict, model_class)) | |
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size | |
model.resize_token_embeddings(model_vocab_size - 15) | |
self.assertEqual(model.config.vocab_size, model_vocab_size - 15) | |
# Check that it actually resizes the embeddings matrix | |
output_embeds = model.get_output_embeddings() | |
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15) | |
# Check bias if present | |
if output_embeds.bias is not None: | |
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15) | |
# Check that the model can still do a forward pass successfully (every parameter should be resized) | |
# Input ids should be clamped to the maximum size of the vocabulary | |
inputs_dict["pixel_values"].clamp_(max=model_vocab_size - 15 - 1) | |
# Check that the model can still do a forward pass successfully (every parameter should be resized) | |
model(**self._prepare_for_class(inputs_dict, model_class)) | |
def test_inputs_embeds(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) | |
pixel_values = inputs["pixel_values"] | |
del inputs["pixel_values"] | |
wte = model.get_input_embeddings() | |
inputs["inputs_embeds"] = wte(pixel_values) | |
with torch.no_grad(): | |
model(**inputs)[0] | |
def _create_and_check_torchscript(self, config, inputs_dict): | |
if not self.test_torchscript: | |
return | |
configs_no_init = _config_zero_init(config) # To be sure we have no Nan | |
configs_no_init.torchscript = True | |
for model_class in self.all_model_classes: | |
model = model_class(config=configs_no_init) | |
model.to(torch_device) | |
model.eval() | |
inputs = self._prepare_for_class(inputs_dict, model_class) | |
try: | |
pixel_values = inputs["pixel_values"] | |
traced_model = torch.jit.trace(model, pixel_values) | |
except RuntimeError: | |
self.fail("Couldn't trace module.") | |
with tempfile.TemporaryDirectory() as tmp_dir_name: | |
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") | |
try: | |
torch.jit.save(traced_model, pt_file_name) | |
except Exception: | |
self.fail("Couldn't save module.") | |
try: | |
loaded_model = torch.jit.load(pt_file_name) | |
except Exception: | |
self.fail("Couldn't load module.") | |
model.to(torch_device) | |
model.eval() | |
loaded_model.to(torch_device) | |
loaded_model.eval() | |
model_state_dict = model.state_dict() | |
loaded_model_state_dict = loaded_model.state_dict() | |
non_persistent_buffers = {} | |
for key in loaded_model_state_dict.keys(): | |
if key not in model_state_dict.keys(): | |
non_persistent_buffers[key] = loaded_model_state_dict[key] | |
loaded_model_state_dict = { | |
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers | |
} | |
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) | |
model_buffers = list(model.buffers()) | |
for non_persistent_buffer in non_persistent_buffers.values(): | |
found_buffer = False | |
for i, model_buffer in enumerate(model_buffers): | |
if torch.equal(non_persistent_buffer, model_buffer): | |
found_buffer = True | |
break | |
self.assertTrue(found_buffer) | |
model_buffers.pop(i) | |
models_equal = True | |
for layer_name, p1 in model_state_dict.items(): | |
if layer_name in loaded_model_state_dict: | |
p2 = loaded_model_state_dict[layer_name] | |
if p1.data.ne(p2.data).sum() > 0: | |
models_equal = False | |
self.assertTrue(models_equal) | |
# We will verify our results on an image of cute cats | |
def prepare_img(): | |
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
return image | |
class ImageGPTModelIntegrationTest(unittest.TestCase): | |
def default_feature_extractor(self): | |
return ImageGPTFeatureExtractor.from_pretrained("openai/imagegpt-small") if is_vision_available() else None | |
def test_inference_causal_lm_head(self): | |
model = ImageGPTForCausalImageModeling.from_pretrained("openai/imagegpt-small").to(torch_device) | |
feature_extractor = self.default_feature_extractor | |
image = prepare_img() | |
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# verify the logits | |
expected_shape = torch.Size((1, 1024, 512)) | |
self.assertEqual(outputs.logits.shape, expected_shape) | |
expected_slice = torch.tensor( | |
[[2.3445, 2.6889, 2.7313], [1.0530, 1.2416, 0.5699], [0.2205, 0.7749, 0.3953]] | |
).to(torch_device) | |
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice, atol=1e-4)) | |