Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
import tempfile | |
import unittest | |
import numpy as np | |
from datasets import load_dataset | |
from transformers.testing_utils import require_torch, require_vision, slow | |
from transformers.utils import is_torch_available, is_vision_available | |
from ...test_image_processing_common import ImageProcessingSavingTestMixin | |
if is_torch_available(): | |
import torch | |
if is_vision_available(): | |
from PIL import Image | |
from transformers import ImageGPTImageProcessor | |
class ImageGPTImageProcessingTester(unittest.TestCase): | |
def __init__( | |
self, | |
parent, | |
batch_size=7, | |
num_channels=3, | |
image_size=18, | |
min_resolution=30, | |
max_resolution=400, | |
do_resize=True, | |
size=None, | |
do_normalize=True, | |
): | |
size = size if size is not None else {"height": 18, "width": 18} | |
self.parent = parent | |
self.batch_size = batch_size | |
self.num_channels = num_channels | |
self.image_size = image_size | |
self.min_resolution = min_resolution | |
self.max_resolution = max_resolution | |
self.do_resize = do_resize | |
self.size = size | |
self.do_normalize = do_normalize | |
def prepare_image_processor_dict(self): | |
return { | |
# here we create 2 clusters for the sake of simplicity | |
"clusters": np.asarray( | |
[ | |
[0.8866443634033203, 0.6618829369544983, 0.3891746401786804], | |
[-0.6042559146881104, -0.02295008860528469, 0.5423797369003296], | |
] | |
), | |
"do_resize": self.do_resize, | |
"size": self.size, | |
"do_normalize": self.do_normalize, | |
} | |
class ImageGPTImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase): | |
image_processing_class = ImageGPTImageProcessor if is_vision_available() else None | |
def setUp(self): | |
self.image_processor_tester = ImageGPTImageProcessingTester(self) | |
def image_processor_dict(self): | |
return self.image_processor_tester.prepare_image_processor_dict() | |
def test_image_processor_properties(self): | |
image_processing = self.image_processing_class(**self.image_processor_dict) | |
self.assertTrue(hasattr(image_processing, "clusters")) | |
self.assertTrue(hasattr(image_processing, "do_resize")) | |
self.assertTrue(hasattr(image_processing, "size")) | |
self.assertTrue(hasattr(image_processing, "do_normalize")) | |
def test_image_processor_from_dict_with_kwargs(self): | |
image_processor = self.image_processing_class.from_dict(self.image_processor_dict) | |
self.assertEqual(image_processor.size, {"height": 18, "width": 18}) | |
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42) | |
self.assertEqual(image_processor.size, {"height": 42, "width": 42}) | |
def test_image_processor_to_json_string(self): | |
image_processor = self.image_processing_class(**self.image_processor_dict) | |
obj = json.loads(image_processor.to_json_string()) | |
for key, value in self.image_processor_dict.items(): | |
if key == "clusters": | |
self.assertTrue(np.array_equal(value, obj[key])) | |
else: | |
self.assertEqual(obj[key], value) | |
def test_image_processor_to_json_file(self): | |
image_processor_first = self.image_processing_class(**self.image_processor_dict) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
json_file_path = os.path.join(tmpdirname, "image_processor.json") | |
image_processor_first.to_json_file(json_file_path) | |
image_processor_second = self.image_processing_class.from_json_file(json_file_path).to_dict() | |
image_processor_first = image_processor_first.to_dict() | |
for key, value in image_processor_first.items(): | |
if key == "clusters": | |
self.assertTrue(np.array_equal(value, image_processor_second[key])) | |
else: | |
self.assertEqual(image_processor_first[key], value) | |
def test_image_processor_from_and_save_pretrained(self): | |
image_processor_first = self.image_processing_class(**self.image_processor_dict) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
image_processor_first.save_pretrained(tmpdirname) | |
image_processor_second = self.image_processing_class.from_pretrained(tmpdirname).to_dict() | |
image_processor_first = image_processor_first.to_dict() | |
for key, value in image_processor_first.items(): | |
if key == "clusters": | |
self.assertTrue(np.array_equal(value, image_processor_second[key])) | |
else: | |
self.assertEqual(image_processor_first[key], value) | |
def test_init_without_params(self): | |
pass | |
def prepare_images(): | |
dataset = load_dataset("hf-internal-testing/fixtures_image_utils", split="test") | |
image1 = Image.open(dataset[4]["file"]) | |
image2 = Image.open(dataset[5]["file"]) | |
images = [image1, image2] | |
return images | |
class ImageGPTImageProcessorIntegrationTest(unittest.TestCase): | |
def test_image(self): | |
image_processing = ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small") | |
images = prepare_images() | |
# test non-batched | |
encoding = image_processing(images[0], return_tensors="pt") | |
self.assertIsInstance(encoding.input_ids, torch.LongTensor) | |
self.assertEqual(encoding.input_ids.shape, (1, 1024)) | |
expected_slice = [306, 191, 191] | |
self.assertEqual(encoding.input_ids[0, :3].tolist(), expected_slice) | |
# test batched | |
encoding = image_processing(images, return_tensors="pt") | |
self.assertIsInstance(encoding.input_ids, torch.LongTensor) | |
self.assertEqual(encoding.input_ids.shape, (2, 1024)) | |
expected_slice = [303, 13, 13] | |
self.assertEqual(encoding.input_ids[1, -3:].tolist(), expected_slice) | |