Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import copy | |
import unittest | |
from transformers import IBertConfig, is_torch_available | |
from transformers.testing_utils import require_torch, slow, torch_device | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from torch import nn | |
from transformers import ( | |
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
IBertForMaskedLM, | |
IBertForMultipleChoice, | |
IBertForQuestionAnswering, | |
IBertForSequenceClassification, | |
IBertForTokenClassification, | |
IBertModel, | |
) | |
from transformers.models.ibert.modeling_ibert import ( | |
IBertEmbeddings, | |
IntGELU, | |
IntLayerNorm, | |
IntSoftmax, | |
QuantAct, | |
QuantEmbedding, | |
QuantLinear, | |
create_position_ids_from_input_ids, | |
) | |
class IBertModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_token_type_ids=True, | |
use_labels=True, | |
vocab_size=99, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
num_labels=3, | |
num_choices=4, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_token_type_ids = use_token_type_ids | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.num_labels = num_labels | |
self.num_choices = num_choices | |
self.scope = scope | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
sequence_labels = None | |
token_labels = None | |
choice_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = self.get_config() | |
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
def get_config(self): | |
return IBertConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
initializer_range=self.initializer_range, | |
quant_mode=True, | |
) | |
def get_pipeline_config(self): | |
config = self.get_config() | |
config.vocab_size = 300 | |
return config | |
def create_and_check_model( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = IBertModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
result = model(input_ids, token_type_ids=token_type_ids) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
def create_and_check_for_masked_lm( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = IBertForMaskedLM(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def create_and_check_for_token_classification( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.num_labels = self.num_labels | |
model = IBertForTokenClassification(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
def create_and_check_for_multiple_choice( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.num_choices = self.num_choices | |
model = IBertForMultipleChoice(config=config) | |
model.to(torch_device) | |
model.eval() | |
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
result = model( | |
multiple_choice_inputs_ids, | |
attention_mask=multiple_choice_input_mask, | |
token_type_ids=multiple_choice_token_type_ids, | |
labels=choice_labels, | |
) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) | |
def create_and_check_for_question_answering( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = IBertForQuestionAnswering(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model( | |
input_ids, | |
attention_mask=input_mask, | |
token_type_ids=token_type_ids, | |
start_positions=sequence_labels, | |
end_positions=sequence_labels, | |
) | |
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} | |
return config, inputs_dict | |
class IBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
test_pruning = False | |
test_torchscript = False | |
test_head_masking = False | |
test_resize_embeddings = False | |
all_model_classes = ( | |
( | |
IBertForMaskedLM, | |
IBertModel, | |
IBertForSequenceClassification, | |
IBertForTokenClassification, | |
IBertForMultipleChoice, | |
IBertForQuestionAnswering, | |
) | |
if is_torch_available() | |
else () | |
) | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": IBertModel, | |
"fill-mask": IBertForMaskedLM, | |
"question-answering": IBertForQuestionAnswering, | |
"text-classification": IBertForSequenceClassification, | |
"token-classification": IBertForTokenClassification, | |
"zero-shot": IBertForSequenceClassification, | |
} | |
if is_torch_available() | |
else {} | |
) | |
def setUp(self): | |
self.model_tester = IBertModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=IBertConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_model_various_embeddings(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
# I-BERT only supports absolute embedding | |
for type in ["absolute"]: | |
config_and_inputs[0].position_embedding_type = type | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_for_masked_lm(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) | |
def test_for_token_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_token_classification(*config_and_inputs) | |
def test_for_multiple_choice(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) | |
def test_for_question_answering(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_question_answering(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in IBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = IBertModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
def test_create_position_ids_respects_padding_index(self): | |
"""Ensure that the default position ids only assign a sequential . This is a regression | |
test for https://github.com/huggingface/transformers/issues/1761 | |
The position ids should be masked with the embedding object's padding index. Therefore, the | |
first available non-padding position index is IBertEmbeddings.padding_idx + 1 | |
""" | |
config = self.model_tester.prepare_config_and_inputs()[0] | |
model = IBertEmbeddings(config=config) | |
input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]]) | |
expected_positions = torch.as_tensor( | |
[[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]] | |
) | |
position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx) | |
self.assertEqual(position_ids.shape, expected_positions.shape) | |
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) | |
def test_create_position_ids_from_inputs_embeds(self): | |
"""Ensure that the default position ids only assign a sequential . This is a regression | |
test for https://github.com/huggingface/transformers/issues/1761 | |
The position ids should be masked with the embedding object's padding index. Therefore, the | |
first available non-padding position index is IBertEmbeddings.padding_idx + 1 | |
""" | |
config = self.model_tester.prepare_config_and_inputs()[0] | |
embeddings = IBertEmbeddings(config=config) | |
inputs_embeds = torch.empty(2, 4, 30) | |
expected_single_positions = [ | |
0 + embeddings.padding_idx + 1, | |
1 + embeddings.padding_idx + 1, | |
2 + embeddings.padding_idx + 1, | |
3 + embeddings.padding_idx + 1, | |
] | |
expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions]) | |
position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds) | |
self.assertEqual(position_ids.shape, expected_positions.shape) | |
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) | |
# Override | |
def test_model_common_attributes(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
self.assertIsInstance(model.get_input_embeddings(), QuantEmbedding) | |
model.set_input_embeddings(nn.Embedding(10, 10)) | |
x = model.get_output_embeddings() | |
self.assertTrue(x is None or isinstance(x, nn.Linear)) | |
# Override | |
def test_feed_forward_chunking(self): | |
pass # I-BERT does not support chunking | |
# Override | |
def test_inputs_embeds(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) | |
if not self.is_encoder_decoder: | |
input_ids = inputs["input_ids"] | |
del inputs["input_ids"] | |
else: | |
encoder_input_ids = inputs["input_ids"] | |
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) | |
del inputs["input_ids"] | |
inputs.pop("decoder_input_ids", None) | |
wte = model.get_input_embeddings() | |
if not self.is_encoder_decoder: | |
embed, embed_scaling_factor = wte(input_ids) | |
inputs["inputs_embeds"] = embed | |
else: | |
inputs["inputs_embeds"] = wte(encoder_input_ids) | |
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) | |
with torch.no_grad(): | |
model(**inputs)[0] | |
class IBertModelIntegrationTest(unittest.TestCase): | |
def test_quant_embedding(self): | |
weight_bit = 8 | |
embedding = QuantEmbedding(2, 4, quant_mode=True, weight_bit=weight_bit) | |
embedding_weight = torch.tensor([[-1.0, -2.0, -3.0, -4.0], [5.0, 6.0, 7.0, 8.0]]) | |
embedding.weight = nn.Parameter(embedding_weight) | |
expected_scaling_factor = embedding_weight.abs().max() / (2 ** (weight_bit - 1) - 1) | |
x, x_scaling_factor = embedding(torch.tensor(0)) | |
y, y_scaling_factor = embedding(torch.tensor(1)) | |
# scaling factor should follow the symmetric quantization rule | |
self.assertTrue(torch.allclose(x_scaling_factor, expected_scaling_factor, atol=1e-4)) | |
self.assertTrue(torch.allclose(x_scaling_factor, expected_scaling_factor, atol=1e-4)) | |
self.assertTrue(torch.allclose(y_scaling_factor, expected_scaling_factor, atol=1e-4)) | |
# quantization error should not exceed the scaling factor | |
self.assertTrue(torch.allclose(x, embedding_weight[0], atol=expected_scaling_factor)) | |
self.assertTrue(torch.allclose(y, embedding_weight[1], atol=expected_scaling_factor)) | |
def test_quant_act(self): | |
def _test_range(): | |
act = QuantAct(activation_bit, act_range_momentum, quant_mode=True) | |
# First pass | |
x = torch.tensor([[-1.0, -2.0, -3.0, -4.0], [5.0, 6.0, 7.0, 8.0]]) | |
x_scaling_factor = torch.tensor(1.0) | |
y, y_scaling_factor = act(x, x_scaling_factor) | |
y_int = y / y_scaling_factor | |
# After the first pass, x_min and x_max should be initialized with x.min() and x.max() | |
expected_x_min, expected_x_max = x.min(), x.max() | |
self.assertTrue(torch.allclose(act.x_min, expected_x_min, atol=1e-4)) | |
self.assertTrue(torch.allclose(act.x_max, expected_x_max, atol=1e-4)) | |
# scaling factor should follow the symmetric quantization rule | |
expected_range = torch.max(expected_x_min.abs(), expected_x_max.abs()) | |
expected_scaling_factor = expected_range / (2 ** (activation_bit - 1) - 1) | |
self.assertTrue(torch.allclose(y_scaling_factor, expected_scaling_factor, atol=1e-4)) | |
# quantization error should not exceed the scaling factor | |
self.assertTrue(torch.allclose(x, y, atol=expected_scaling_factor)) | |
# output should be integer | |
self.assertTrue(torch.allclose(y_int, y_int.round(), atol=1e-4)) | |
# Second Pass | |
x = torch.tensor([[-1.0, -2.0, -3.0, -4.0], [5.0, 6.0, 7.0, 8.0]]) * 2 | |
x_scaling_factor = torch.tensor(1.0) | |
y, y_scaling_factor = act(x, x_scaling_factor) | |
y_int = y / y_scaling_factor | |
# From the second pass, x_min and x_max should be updated with moving average | |
expected_x_min = expected_x_min * act_range_momentum + x.min() * (1 - act_range_momentum) | |
expected_x_max = expected_x_max * act_range_momentum + x.max() * (1 - act_range_momentum) | |
self.assertTrue(torch.allclose(act.x_min, expected_x_min, atol=1e-4)) | |
self.assertTrue(torch.allclose(act.x_max, expected_x_max, atol=1e-4)) | |
# scaling factor should follow the symmetric quantization rule | |
expected_range = torch.max(expected_x_min.abs(), expected_x_max.abs()) | |
expected_scaling_factor = expected_range / (2 ** (activation_bit - 1) - 1) | |
self.assertTrue(torch.allclose(y_scaling_factor, expected_scaling_factor, atol=1e-4)) | |
# quantization error should not exceed the scaling factor | |
x = x.clamp(min=-expected_range, max=expected_range) | |
self.assertTrue(torch.allclose(x, y, atol=expected_scaling_factor)) | |
# output should be integer | |
self.assertTrue(torch.allclose(y_int, y_int.round(), atol=1e-4)) | |
# Third pass, with eval() | |
act.eval() | |
x = torch.tensor([[-1.0, -2.0, -3.0, -4.0], [5.0, 6.0, 7.0, 8.0]]) * 3 | |
# In eval mode, min/max and scaling factor must be fixed | |
self.assertTrue(torch.allclose(act.x_min, expected_x_min, atol=1e-4)) | |
self.assertTrue(torch.allclose(act.x_max, expected_x_max, atol=1e-4)) | |
self.assertTrue(torch.allclose(y_scaling_factor, expected_scaling_factor, atol=1e-4)) | |
def _test_identity(): | |
# test if identity and identity_scaling_factor are given | |
# should add the input values | |
act = QuantAct(activation_bit, act_range_momentum, quant_mode=True) | |
x = torch.tensor([[-1.0, -2.0, -3.0, -4.0], [5.0, 6.0, 7.0, 8.0]]) | |
y = torch.tensor([[6.0, -7.0, 1.0, -2.0], [3.0, -4.0, -8.0, 5.0]]) | |
x_scaling_factor = torch.tensor(1.0) | |
y_scaling_factor = torch.tensor(0.5) | |
z, z_scaling_factor = act(x, x_scaling_factor, y, y_scaling_factor) | |
z_int = z / z_scaling_factor | |
self.assertTrue(torch.allclose(x + y, z, atol=0.1)) | |
self.assertTrue(torch.allclose(z_int, z_int.round(), atol=1e-4)) | |
activation_bit = 8 | |
act_range_momentum = 0.95 | |
_test_range() | |
_test_identity() | |
def test_quant_linear(self): | |
def _test(per_channel): | |
linear_q = QuantLinear(2, 4, quant_mode=True, per_channel=per_channel, weight_bit=weight_bit) | |
linear_dq = QuantLinear(2, 4, quant_mode=False, per_channel=per_channel, weight_bit=weight_bit) | |
linear_weight = torch.tensor([[-1.0, 2.0, 3.0, -4.0], [5.0, -6.0, -7.0, 8.0]]).T | |
linear_q.weight = nn.Parameter(linear_weight) | |
linear_dq.weight = nn.Parameter(linear_weight) | |
q, q_scaling_factor = linear_q(x, x_scaling_factor) | |
q_int = q / q_scaling_factor | |
dq, dq_scaling_factor = linear_dq(x, x_scaling_factor) | |
if per_channel: | |
q_max = linear_weight.abs().max(dim=1).values | |
else: | |
q_max = linear_weight.abs().max() | |
expected_scaling_factor = q_max / (2 ** (weight_bit - 1) - 1) | |
# scaling factor should follow the symmetric quantization rule | |
self.assertTrue(torch.allclose(linear_q.fc_scaling_factor, expected_scaling_factor, atol=1e-4)) | |
# output of the normal linear layer and the quantized linear layer should be similar | |
self.assertTrue(torch.allclose(q, dq, atol=0.5)) | |
# output of the quantized linear layer should be integer | |
self.assertTrue(torch.allclose(q_int, q_int.round(), atol=1e-4)) | |
weight_bit = 8 | |
x = torch.tensor([[2.0, -5.0], [-3.0, 4.0]]) | |
x_scaling_factor = torch.tensor([1.0]) | |
_test(True) | |
_test(False) | |
def test_int_gelu(self): | |
gelu_q = IntGELU(quant_mode=True) | |
gelu_dq = nn.GELU() | |
x_int = torch.range(-10000, 10000, 1) | |
x_scaling_factor = torch.tensor(0.001) | |
x = x_int * x_scaling_factor | |
q, q_scaling_factor = gelu_q(x, x_scaling_factor) | |
q_int = q / q_scaling_factor | |
dq = gelu_dq(x) | |
# output of the normal GELU and the quantized GELU should be similar | |
self.assertTrue(torch.allclose(q, dq, atol=0.5)) | |
# output of the quantized GELU layer should be integer | |
self.assertTrue(torch.allclose(q_int, q_int.round(), atol=1e-4)) | |
def test_force_dequant_gelu(self): | |
x_int = torch.range(-10000, 10000, 1) | |
x_scaling_factor = torch.tensor(0.001) | |
x = x_int * x_scaling_factor | |
gelu_dq = IntGELU(quant_mode=False) | |
gelu_fdqs_dict = { | |
True: [ | |
IntGELU(quant_mode=True, force_dequant="nonlinear"), | |
IntGELU(quant_mode=True, force_dequant="gelu"), | |
], | |
False: [ | |
IntGELU(quant_mode=True, force_dequant="none"), | |
IntGELU(quant_mode=True, force_dequant="softmax"), | |
IntGELU(quant_mode=True, force_dequant="layernorm"), | |
], | |
} | |
dq, dq_scaling_factor = gelu_dq(x, x_scaling_factor) | |
for label, gelu_fdqs in gelu_fdqs_dict.items(): | |
for gelu_fdq in gelu_fdqs: | |
q, q_scaling_factor = gelu_fdq(x, x_scaling_factor) | |
if label: | |
self.assertTrue(torch.allclose(q, dq, atol=1e-4)) | |
else: | |
self.assertFalse(torch.allclose(q, dq, atol=1e-4)) | |
def test_int_softmax(self): | |
output_bit = 8 | |
softmax_q = IntSoftmax(output_bit, quant_mode=True) | |
softmax_dq = nn.Softmax() | |
# x_int = torch.range(-10000, 10000, 1) | |
def _test(array): | |
x_int = torch.tensor(array) | |
x_scaling_factor = torch.tensor(0.1) | |
x = x_int * x_scaling_factor | |
q, q_scaling_factor = softmax_q(x, x_scaling_factor) | |
q_int = q / q_scaling_factor | |
dq = softmax_dq(x) | |
# output of the normal Softmax and the quantized Softmax should be similar | |
self.assertTrue(torch.allclose(q, dq, atol=0.5)) | |
# output of the quantized GELU layer should be integer | |
self.assertTrue(torch.allclose(q_int, q_int.round(), atol=1e-4)) | |
# Output of the quantize Softmax should not exceed the output_bit | |
self.assertTrue(q.abs().max() < 2**output_bit) | |
array = [[i + j for j in range(10)] for i in range(-10, 10)] | |
_test(array) | |
array = [[i + j for j in range(50)] for i in range(-10, 10)] | |
_test(array) | |
array = [[i + 100 * j for j in range(2)] for i in range(-10, 10)] | |
_test(array) | |
def test_force_dequant_softmax(self): | |
output_bit = 8 | |
array = [[i + j for j in range(10)] for i in range(-10, 10)] | |
x_int = torch.tensor(array) | |
x_scaling_factor = torch.tensor(0.1) | |
x = x_int * x_scaling_factor | |
softmax_dq = IntSoftmax(output_bit, quant_mode=False) | |
softmax_fdqs_dict = { | |
True: [ | |
IntSoftmax(output_bit, quant_mode=True, force_dequant="nonlinear"), | |
IntSoftmax(output_bit, quant_mode=True, force_dequant="softmax"), | |
], | |
False: [ | |
IntSoftmax(output_bit, quant_mode=True, force_dequant="none"), | |
IntSoftmax(output_bit, quant_mode=True, force_dequant="gelu"), | |
IntSoftmax(output_bit, quant_mode=True, force_dequant="layernorm"), | |
], | |
} | |
dq, dq_scaling_factor = softmax_dq(x, x_scaling_factor) | |
for label, softmax_fdqs in softmax_fdqs_dict.items(): | |
for softmax_fdq in softmax_fdqs: | |
q, q_scaling_factor = softmax_fdq(x, x_scaling_factor) | |
if label: | |
self.assertTrue(torch.allclose(q, dq, atol=1e-4)) | |
else: | |
self.assertFalse(torch.allclose(q, dq, atol=1e-4)) | |
def test_int_layernorm(self): | |
output_bit = 8 | |
# some random matrix | |
array = [[[i * j * j + j for j in range(5, 15)]] for i in range(-10, 10)] | |
x_int = torch.tensor(array) | |
x_scaling_factor = torch.tensor(0.1) | |
x = x_int * x_scaling_factor | |
ln_q = IntLayerNorm(x.shape[1:], 1e-5, quant_mode=True, output_bit=output_bit) | |
ln_dq = nn.LayerNorm(x.shape[1:], 1e-5) | |
ln_q.weight = nn.Parameter(torch.ones(x.shape[1:])) | |
ln_q.bias = nn.Parameter(torch.ones(x.shape[1:])) | |
ln_dq.weight = nn.Parameter(torch.ones(x.shape[1:])) | |
ln_dq.bias = nn.Parameter(torch.ones(x.shape[1:])) | |
q, q_scaling_factor = ln_q(x, x_scaling_factor) | |
q_int = q / q_scaling_factor | |
dq = ln_dq(x) | |
# output of the normal LN and the quantized LN should be similar | |
self.assertTrue(torch.allclose(q, dq, atol=0.5)) | |
# output of the quantized GELU layer should be integer | |
self.assertTrue(torch.allclose(q_int, q_int.round(), atol=1e-4)) | |
def test_force_dequant_layernorm(self): | |
output_bit = 8 | |
array = [[[i * j * j + j for j in range(5, 15)]] for i in range(-10, 10)] | |
x_int = torch.tensor(array) | |
x_scaling_factor = torch.tensor(0.1) | |
x = x_int * x_scaling_factor | |
ln_dq = IntLayerNorm(x.shape[1:], 1e-5, quant_mode=False, output_bit=output_bit) | |
ln_fdqs_dict = { | |
True: [ | |
IntLayerNorm(x.shape[1:], 1e-5, quant_mode=True, output_bit=output_bit, force_dequant="nonlinear"), | |
IntLayerNorm(x.shape[1:], 1e-5, quant_mode=True, output_bit=output_bit, force_dequant="layernorm"), | |
], | |
False: [ | |
IntLayerNorm(x.shape[1:], 1e-5, quant_mode=True, output_bit=output_bit, force_dequant="none"), | |
IntLayerNorm(x.shape[1:], 1e-5, quant_mode=True, output_bit=output_bit, force_dequant="gelu"), | |
IntLayerNorm(x.shape[1:], 1e-5, quant_mode=True, output_bit=output_bit, force_dequant="softmax"), | |
], | |
} | |
ln_dq.weight = nn.Parameter(torch.ones(x.shape[1:])) | |
ln_dq.bias = nn.Parameter(torch.ones(x.shape[1:])) | |
dq, dq_scaling_factor = ln_dq(x, x_scaling_factor) | |
for label, ln_fdqs in ln_fdqs_dict.items(): | |
for ln_fdq in ln_fdqs: | |
ln_fdq.weight = nn.Parameter(torch.ones(x.shape[1:])) | |
ln_fdq.bias = nn.Parameter(torch.ones(x.shape[1:])) | |
q, q_scaling_factor = ln_fdq(x, x_scaling_factor) | |
if label: | |
self.assertTrue(torch.allclose(q, dq, atol=1e-4)) | |
else: | |
self.assertFalse(torch.allclose(q, dq, atol=1e-4)) | |
def quantize(self, model): | |
# Helper function that quantizes the given model | |
# Recursively convert all the `quant_mode` attributes as `True` | |
if hasattr(model, "quant_mode"): | |
model.quant_mode = True | |
elif type(model) == nn.Sequential: | |
for n, m in model.named_children(): | |
self.quantize(m) | |
elif type(model) == nn.ModuleList: | |
for n in model: | |
self.quantize(n) | |
else: | |
for attr in dir(model): | |
mod = getattr(model, attr) | |
if isinstance(mod, nn.Module) and mod != model: | |
self.quantize(mod) | |
def test_inference_masked_lm(self): | |
# I-BERT should be "equivalent" to RoBERTa if not quantized | |
# Test coped from `test_modeling_roberta.py` | |
model = IBertForMaskedLM.from_pretrained("kssteven/ibert-roberta-base") | |
input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) | |
output = model(input_ids)[0] | |
expected_shape = torch.Size((1, 11, 50265)) | |
self.assertEqual(output.shape, expected_shape) | |
expected_slice = torch.tensor( | |
[[[33.8802, -4.3103, 22.7761], [4.6539, -2.8098, 13.6253], [1.8228, -3.6898, 8.8600]]] | |
) | |
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) | |
# I-BERT should be "similar" to RoBERTa if quantized | |
self.quantize(model) | |
output = model(input_ids)[0] | |
self.assertEqual(output.shape, expected_shape) | |
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=0.1)) | |
def test_inference_classification_head(self): | |
# I-BERT should be "equivalent" to RoBERTa if not quantized | |
# Test coped from `test_modeling_roberta.py` | |
model = IBertForSequenceClassification.from_pretrained("kssteven/ibert-roberta-large-mnli") | |
input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) | |
output = model(input_ids)[0] | |
expected_shape = torch.Size((1, 3)) | |
self.assertEqual(output.shape, expected_shape) | |
expected_tensor = torch.tensor([[-0.9469, 0.3913, 0.5118]]) | |
self.assertTrue(torch.allclose(output, expected_tensor, atol=1e-4)) | |
# I-BERT should be "similar" to RoBERTa if quantized | |
self.quantize(model) | |
output = model(input_ids)[0] | |
self.assertEqual(output.shape, expected_shape) | |
self.assertTrue(torch.allclose(output, expected_tensor, atol=0.1)) | |