Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import AutoTokenizer, GPTJConfig, is_tf_available | |
from transformers.testing_utils import require_tf, slow, tooslow | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
from ...utils.test_modeling_tf_core import TFCoreModelTesterMixin | |
if is_tf_available(): | |
import tensorflow as tf | |
from transformers.models.gptj.modeling_tf_gptj import ( | |
TFGPTJForCausalLM, | |
TFGPTJForQuestionAnswering, | |
TFGPTJForSequenceClassification, | |
TFGPTJModel, | |
shape_list, | |
) | |
class TFGPTJModelTester: | |
def __init__(self, parent): | |
self.parent = parent | |
self.batch_size = 13 | |
self.seq_length = 7 | |
self.is_training = True | |
self.use_token_type_ids = True | |
self.use_input_mask = True | |
self.use_labels = True | |
self.use_mc_token_ids = True | |
self.vocab_size = 99 | |
self.hidden_size = 32 | |
self.rotary_dim = 4 | |
self.num_hidden_layers = 5 | |
self.num_attention_heads = 4 | |
self.intermediate_size = 37 | |
self.hidden_act = "gelu" | |
self.hidden_dropout_prob = 0.1 | |
self.attention_probs_dropout_prob = 0.1 | |
self.max_position_embeddings = 512 | |
self.type_vocab_size = 16 | |
self.type_sequence_label_size = 2 | |
self.initializer_range = 0.02 | |
self.num_labels = 3 | |
self.num_choices = 4 | |
self.scope = None | |
self.bos_token_id = self.vocab_size - 1 | |
self.eos_token_id = self.vocab_size - 1 | |
self.pad_token_id = self.vocab_size - 1 | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
mc_token_ids = None | |
if self.use_mc_token_ids: | |
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) | |
sequence_labels = None | |
token_labels = None | |
choice_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = GPTJConfig( | |
vocab_size=self.vocab_size, | |
n_embd=self.hidden_size, | |
n_layer=self.num_hidden_layers, | |
n_head=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
n_positions=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
initializer_range=self.initializer_range, | |
bos_token_id=self.bos_token_id, | |
eos_token_id=self.eos_token_id, | |
pad_token_id=self.pad_token_id, | |
rotary_dim=self.rotary_dim, | |
return_dict=True, | |
) | |
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) | |
return ( | |
config, | |
input_ids, | |
input_mask, | |
head_mask, | |
token_type_ids, | |
mc_token_ids, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) | |
def create_and_check_gptj_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): | |
model = TFGPTJModel(config=config) | |
inputs = { | |
"input_ids": input_ids, | |
"attention_mask": input_mask, | |
"token_type_ids": token_type_ids, | |
} | |
result = model(inputs) | |
inputs = [input_ids, None, input_mask] # None is the input for 'past' | |
result = model(inputs) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
def create_and_check_gptj_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): | |
model = TFGPTJModel(config=config) | |
# first forward pass | |
outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True) | |
outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids) | |
outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False) | |
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) | |
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) | |
output, past_key_values = outputs.to_tuple() | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size) | |
# append to next input_ids and token_type_ids | |
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) | |
next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1) | |
output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"] | |
output_from_past = model(next_tokens, token_type_ids=next_token_types, past_key_values=past_key_values)[ | |
"last_hidden_state" | |
] | |
# select random slice | |
random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1])) | |
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] | |
output_from_past_slice = output_from_past[:, 0, random_slice_idx] | |
# test that outputs are equal for slice | |
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6) | |
def create_and_check_gptj_model_attention_mask_past( | |
self, config, input_ids, input_mask, head_mask, token_type_ids, *args | |
): | |
model = TFGPTJModel(config=config) | |
# create attention mask | |
half_seq_length = self.seq_length // 2 | |
attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32) | |
attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32) | |
attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1) | |
# first forward pass | |
output, past_key_values = model(input_ids, attention_mask=attn_mask).to_tuple() | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
# change a random masked slice from input_ids | |
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1 | |
random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size) | |
vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change) | |
condition = tf.transpose( | |
tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size)) | |
) | |
input_ids = tf.where(condition, random_other_next_tokens, input_ids) | |
# append to next input_ids and attn_mask | |
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) | |
attn_mask = tf.concat([attn_mask, tf.ones((shape_list(attn_mask)[0], 1), dtype=tf.int32)], axis=1) | |
# get two different outputs | |
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] | |
output_from_past = model(next_tokens, past_key_values=past_key_values, attention_mask=attn_mask)[ | |
"last_hidden_state" | |
] | |
# select random slice | |
random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1])) | |
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] | |
output_from_past_slice = output_from_past[:, 0, random_slice_idx] | |
# test that outputs are equal for slice | |
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-12) | |
def create_and_check_gptj_model_past_large_inputs( | |
self, config, input_ids, input_mask, head_mask, token_type_ids, *args | |
): | |
model = TFGPTJModel(config=config) | |
input_ids = input_ids[:1, :] | |
input_mask = input_mask[:1, :] | |
token_type_ids = token_type_ids[:1, :] | |
self.batch_size = 1 | |
# first forward pass | |
outputs = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, use_cache=True) | |
output, past_key_values = outputs.to_tuple() | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) | |
next_attn_mask = ids_tensor((self.batch_size, 3), 2) | |
next_token_types = ids_tensor((self.batch_size, 3), self.type_vocab_size) | |
# append to next input_ids and token_type_ids | |
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) | |
next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1) | |
next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1) | |
output_from_no_past = model( | |
next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask | |
)["last_hidden_state"] | |
output_from_past = model( | |
next_tokens, | |
token_type_ids=next_token_types, | |
attention_mask=next_attention_mask, | |
past_key_values=past_key_values, | |
)["last_hidden_state"] | |
self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1]) | |
# select random slice | |
random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1])) | |
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] | |
output_from_past_slice = output_from_past[:, :, random_slice_idx] | |
# test that outputs are equal for slice | |
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) | |
def create_and_check_gptj_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): | |
model = TFGPTJForCausalLM(config=config) | |
inputs = { | |
"input_ids": input_ids, | |
"attention_mask": input_mask, | |
"token_type_ids": token_type_ids, | |
} | |
result = model(inputs) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
input_mask, | |
head_mask, | |
token_type_ids, | |
mc_token_ids, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = config_and_inputs | |
inputs_dict = { | |
"input_ids": input_ids, | |
"token_type_ids": token_type_ids, | |
"attention_mask": input_mask, | |
} | |
return config, inputs_dict | |
class TFGPTJModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
(TFGPTJForCausalLM, TFGPTJForSequenceClassification, TFGPTJForQuestionAnswering, TFGPTJModel) | |
if is_tf_available() | |
else () | |
) | |
all_generative_model_classes = (TFGPTJForCausalLM,) if is_tf_available() else () | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": TFGPTJModel, | |
"question-answering": TFGPTJForQuestionAnswering, | |
"text-classification": TFGPTJForSequenceClassification, | |
"text-generation": TFGPTJForCausalLM, | |
"zero-shot": TFGPTJForSequenceClassification, | |
} | |
if is_tf_available() | |
else {} | |
) | |
test_onnx = False | |
test_pruning = False | |
test_missing_keys = False | |
test_head_masking = False | |
# TODO: Fix the failed tests | |
def is_pipeline_test_to_skip( | |
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name | |
): | |
if ( | |
pipeline_test_casse_name == "QAPipelineTests" | |
and tokenizer_name is not None | |
and not tokenizer_name.endswith("Fast") | |
): | |
# `QAPipelineTests` fails for a few models when the slower tokenizer are used. | |
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) | |
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer | |
return True | |
return False | |
def setUp(self): | |
self.model_tester = TFGPTJModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=GPTJConfig, n_embd=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_gptj_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_gptj_model(*config_and_inputs) | |
def test_gptj_model_past(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_gptj_model_past(*config_and_inputs) | |
def test_gptj_model_att_mask_past(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_gptj_model_attention_mask_past(*config_and_inputs) | |
def test_gptj_model_past_large_inputs(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_gptj_model_past_large_inputs(*config_and_inputs) | |
def test_gptj_lm_head_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_gptj_lm_head_model(*config_and_inputs) | |
def test_model_common_attributes(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer) | |
if model_class in self.all_generative_model_classes: | |
x = model.get_output_embeddings() | |
assert isinstance(x, tf.keras.layers.Layer) | |
name = model.get_bias() | |
assert name is None | |
else: | |
x = model.get_output_embeddings() | |
assert x is None | |
name = model.get_bias() | |
assert name is None | |
def test_model_from_pretrained(self): | |
model = TFGPTJModel.from_pretrained("EleutherAI/gpt-j-6B", from_pt=True) | |
self.assertIsNotNone(model) | |
def test_resize_token_embeddings(self): | |
super().test_resize_token_embeddings() | |
# Marked as @tooslow due to GPU OOM -- but still useful to run locally. Requires ~39GB of RAM. | |
class TFGPTJModelLanguageGenerationTest(unittest.TestCase): | |
def test_lm_generate_gptj(self): | |
model = TFGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", from_pt=True) | |
input_ids = tf.convert_to_tensor([[464, 3290]], dtype=tf.int32) # The dog | |
# fmt: off | |
# The dog is a man's best friend. It is a loyal companion, and it is a friend | |
expected_output_ids = [464, 3290, 318, 257, 582, 338, 1266, 1545, 13, 632, 318, 257, 9112, 15185, 11, 290, 340, 318, 257, 1545] | |
# fmt: on | |
output_ids = model.generate(input_ids, do_sample=False) | |
self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids) | |
def test_gptj_sample(self): | |
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B", revision="float16") | |
model = TFGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", revision="float16", from_pt=True) | |
tokenized = tokenizer("Today is a nice day and", return_tensors="tf") | |
# forces the generation to happen on CPU, to avoid GPU-related quirks | |
with tf.device(":/CPU:0"): | |
output_ids = model.generate(**tokenized, do_sample=True, seed=[42, 0]) | |
output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
EXPECTED_OUTPUT_STR = "Today is a nice day and I’m going to go for a walk. I’" | |
self.assertEqual(output_str, EXPECTED_OUTPUT_STR) | |
def _get_beam_search_test_objects(self): | |
model = TFGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", revision="float16", from_pt=True) | |
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B", revision="float16") | |
tokenizer.padding_side = "left" | |
# Define PAD Token = EOS Token = 50256 | |
tokenizer.pad_token = tokenizer.eos_token | |
model.config.pad_token_id = model.config.eos_token_id | |
# use different length sentences to test batching | |
sentences = [ | |
"Hello, my dog is a little", | |
"Today, I", | |
] | |
expected_output_sentences = [ | |
"Hello, my dog is a little over a year old and has been diagnosed with hip dysplasia", | |
"Today, I’m going to be talking about a topic that’", | |
] | |
return model, tokenizer, sentences, expected_output_sentences | |
def test_batch_beam_search(self): | |
# Confirms that we get the expected results with left-padded beam search | |
model, tokenizer, sentences, expected_output_sentences = self._get_beam_search_test_objects() | |
inputs = tokenizer(sentences, return_tensors="tf", padding=True) | |
outputs = model.generate(**inputs, do_sample=False, num_beams=2) | |
batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
self.assertListEqual(expected_output_sentences, batch_out_sentence) | |
def test_batch_left_padding(self): | |
# Confirms that left-padding is working properly | |
model, tokenizer, sentences, expected_output_sentences = self._get_beam_search_test_objects() | |
inputs = tokenizer(sentences, return_tensors="tf", padding=True) | |
inputs_non_padded = tokenizer(sentences[0], return_tensors="tf") | |
output_non_padded = model.generate(**inputs_non_padded, do_sample=False, num_beams=2) | |
num_paddings = ( | |
shape_list(inputs_non_padded["input_ids"])[-1] | |
- tf.reduce_sum(tf.cast(inputs["attention_mask"][-1], tf.int64)).numpy() | |
) | |
inputs_padded = tokenizer(sentences[1], return_tensors="tf") | |
output_padded = model.generate( | |
**inputs_padded, do_sample=False, num_beams=2, max_length=model.config.max_length - num_paddings | |
) | |
non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True) | |
padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True) | |
self.assertListEqual(expected_output_sentences, [non_padded_sentence, padded_sentence]) | |
def test_xla_beam_search(self): | |
# Confirms that XLA is working properly | |
model, tokenizer, sentences, expected_output_sentences = self._get_beam_search_test_objects() | |
inputs = tokenizer(sentences, return_tensors="tf", padding=True) | |
xla_generate = tf.function(model.generate, jit_compile=True) | |
outputs_xla = xla_generate(**inputs, do_sample=False, num_beams=2) | |
xla_sentence = tokenizer.batch_decode(outputs_xla, skip_special_tokens=True) | |
self.assertListEqual(expected_output_sentences, xla_sentence) | |