Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import GPT2Config, is_tf_available | |
from transformers.testing_utils import require_tf, require_tf2onnx, slow | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
from ...utils.test_modeling_tf_core import TFCoreModelTesterMixin | |
if is_tf_available(): | |
import tensorflow as tf | |
from transformers import GPT2Tokenizer | |
from transformers.models.gpt2.modeling_tf_gpt2 import ( | |
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFGPT2DoubleHeadsModel, | |
TFGPT2ForSequenceClassification, | |
TFGPT2LMHeadModel, | |
TFGPT2Model, | |
) | |
from transformers.tf_utils import shape_list | |
class TFGPT2ModelTester: | |
def __init__( | |
self, | |
parent, | |
): | |
self.parent = parent | |
self.batch_size = 13 | |
self.seq_length = 7 | |
self.is_training = True | |
self.use_token_type_ids = True | |
self.use_input_mask = True | |
self.use_labels = True | |
self.use_mc_token_ids = True | |
self.vocab_size = 99 | |
self.hidden_size = 32 | |
self.num_hidden_layers = 5 | |
self.num_attention_heads = 4 | |
self.intermediate_size = 37 | |
self.hidden_act = "gelu" | |
self.hidden_dropout_prob = 0.1 | |
self.attention_probs_dropout_prob = 0.1 | |
self.max_position_embeddings = 512 | |
self.type_vocab_size = 16 | |
self.type_sequence_label_size = 2 | |
self.initializer_range = 0.02 | |
self.num_labels = 3 | |
self.num_choices = 4 | |
self.scope = None | |
self.bos_token_id = self.vocab_size - 1 | |
self.eos_token_id = self.vocab_size - 1 | |
self.pad_token_id = self.vocab_size - 1 | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
mc_token_ids = None | |
if self.use_mc_token_ids: | |
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) | |
sequence_labels = None | |
token_labels = None | |
choice_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = GPT2Config( | |
vocab_size=self.vocab_size, | |
n_embd=self.hidden_size, | |
n_layer=self.num_hidden_layers, | |
n_head=self.num_attention_heads, | |
# intermediate_size=self.intermediate_size, | |
# hidden_act=self.hidden_act, | |
# hidden_dropout_prob=self.hidden_dropout_prob, | |
# attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
n_positions=self.max_position_embeddings, | |
# type_vocab_size=self.type_vocab_size, | |
# initializer_range=self.initializer_range | |
bos_token_id=self.bos_token_id, | |
eos_token_id=self.eos_token_id, | |
pad_token_id=self.pad_token_id, | |
return_dict=True, | |
) | |
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) | |
return ( | |
config, | |
input_ids, | |
input_mask, | |
head_mask, | |
token_type_ids, | |
mc_token_ids, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) | |
def prepare_config_and_inputs_for_decoder(self): | |
( | |
config, | |
input_ids, | |
input_mask, | |
head_mask, | |
token_type_ids, | |
mc_token_ids, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = self.prepare_config_and_inputs() | |
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) | |
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) | |
return ( | |
config, | |
input_ids, | |
input_mask, | |
head_mask, | |
token_type_ids, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) | |
def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): | |
model = TFGPT2Model(config=config) | |
inputs = { | |
"input_ids": input_ids, | |
"attention_mask": input_mask, | |
"token_type_ids": token_type_ids, | |
} | |
result = model(inputs) | |
inputs = [input_ids, None, input_mask] # None is the input for 'past' | |
result = model(inputs) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): | |
model = TFGPT2Model(config=config) | |
# first forward pass | |
outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True) | |
outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids) | |
outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False) | |
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) | |
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) | |
output, past_key_values = outputs.to_tuple() | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size) | |
# append to next input_ids and token_type_ids | |
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) | |
next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1) | |
output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"] | |
output_from_past = model(next_tokens, token_type_ids=next_token_types, past_key_values=past_key_values)[ | |
"last_hidden_state" | |
] | |
# select random slice | |
random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1])) | |
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] | |
output_from_past_slice = output_from_past[:, 0, random_slice_idx] | |
# test that outputs are equal for slice | |
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6) | |
def create_and_check_gpt2_model_attention_mask_past( | |
self, config, input_ids, input_mask, head_mask, token_type_ids, *args | |
): | |
model = TFGPT2Model(config=config) | |
# create attention mask | |
half_seq_length = self.seq_length // 2 | |
attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32) | |
attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32) | |
attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1) | |
# first forward pass | |
output, past_key_values = model(input_ids, attention_mask=attn_mask).to_tuple() | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
# change a random masked slice from input_ids | |
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1 | |
random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size) | |
vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change) | |
condition = tf.transpose( | |
tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size)) | |
) | |
input_ids = tf.where(condition, random_other_next_tokens, input_ids) | |
# append to next input_ids and attn_mask | |
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) | |
attn_mask = tf.concat([attn_mask, tf.ones((shape_list(attn_mask)[0], 1), dtype=tf.int32)], axis=1) | |
# get two different outputs | |
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] | |
output_from_past = model(next_tokens, past_key_values=past_key_values, attention_mask=attn_mask)[ | |
"last_hidden_state" | |
] | |
# select random slice | |
random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1])) | |
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] | |
output_from_past_slice = output_from_past[:, 0, random_slice_idx] | |
# test that outputs are equal for slice | |
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-12) | |
def create_and_check_gpt2_model_past_large_inputs( | |
self, config, input_ids, input_mask, head_mask, token_type_ids, *args | |
): | |
model = TFGPT2Model(config=config) | |
input_ids = input_ids[:1, :] | |
input_mask = input_mask[:1, :] | |
token_type_ids = token_type_ids[:1, :] | |
self.batch_size = 1 | |
# first forward pass | |
outputs = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, use_cache=True) | |
output, past_key_values = outputs.to_tuple() | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) | |
next_attn_mask = ids_tensor((self.batch_size, 3), 2) | |
next_token_types = ids_tensor((self.batch_size, 3), self.type_vocab_size) | |
# append to next input_ids and token_type_ids | |
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) | |
next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1) | |
next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1) | |
output_from_no_past = model( | |
next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask | |
)["last_hidden_state"] | |
output_from_past = model( | |
next_tokens, | |
token_type_ids=next_token_types, | |
attention_mask=next_attention_mask, | |
past_key_values=past_key_values, | |
)["last_hidden_state"] | |
self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1]) | |
# select random slice | |
random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1])) | |
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] | |
output_from_past_slice = output_from_past[:, :, random_slice_idx] | |
# test that outputs are equal for slice | |
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) | |
def create_and_check_gpt2_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): | |
model = TFGPT2LMHeadModel(config=config) | |
inputs = { | |
"input_ids": input_ids, | |
"attention_mask": input_mask, | |
"token_type_ids": token_type_ids, | |
} | |
result = model(inputs) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def create_and_check_gpt2_double_head( | |
self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args | |
): | |
model = TFGPT2DoubleHeadsModel(config=config) | |
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) | |
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) | |
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) | |
inputs = { | |
"input_ids": multiple_choice_inputs_ids, | |
"mc_token_ids": mc_token_ids, | |
"attention_mask": multiple_choice_input_mask, | |
"token_type_ids": multiple_choice_token_type_ids, | |
} | |
result = model(inputs) | |
self.parent.assertEqual( | |
result.logits.shape, (self.batch_size, self.num_choices, self.seq_length, self.vocab_size) | |
) | |
self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices)) | |
def create_and_check_gpt2_for_sequence_classification( | |
self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args | |
): | |
config.num_labels = self.num_labels | |
inputs = { | |
"input_ids": input_ids, | |
"attention_mask": input_mask, | |
"token_type_ids": token_type_ids, | |
"labels": sequence_labels, | |
} | |
model = TFGPT2ForSequenceClassification(config) | |
result = model(inputs) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
input_mask, | |
head_mask, | |
token_type_ids, | |
mc_token_ids, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = config_and_inputs | |
inputs_dict = { | |
"input_ids": input_ids, | |
"token_type_ids": token_type_ids, | |
"attention_mask": input_mask, | |
} | |
return config, inputs_dict | |
class TFGPT2ModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
(TFGPT2Model, TFGPT2LMHeadModel, TFGPT2ForSequenceClassification, TFGPT2DoubleHeadsModel) | |
if is_tf_available() | |
else () | |
) | |
all_generative_model_classes = (TFGPT2LMHeadModel,) if is_tf_available() else () | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": TFGPT2Model, | |
"text-classification": TFGPT2ForSequenceClassification, | |
"text-generation": TFGPT2LMHeadModel, | |
"zero-shot": TFGPT2ForSequenceClassification, | |
} | |
if is_tf_available() | |
else {} | |
) | |
test_head_masking = False | |
test_onnx = True | |
onnx_min_opset = 10 | |
def setUp(self): | |
self.model_tester = TFGPT2ModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_gpt2_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_gpt2_model(*config_and_inputs) | |
def test_gpt2_model_past(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_gpt2_model_past(*config_and_inputs) | |
def test_gpt2_model_att_mask_past(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_gpt2_model_attention_mask_past(*config_and_inputs) | |
def test_gpt2_model_past_large_inputs(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_gpt2_model_past_large_inputs(*config_and_inputs) | |
def test_gpt2_lm_head(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_gpt2_lm_head(*config_and_inputs) | |
def test_gpt2_double_head(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_gpt2_double_head(*config_and_inputs) | |
def test_model_common_attributes(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer) | |
if model_class in self.all_generative_model_classes: | |
x = model.get_output_embeddings() | |
assert isinstance(x, tf.keras.layers.Layer) | |
name = model.get_bias() | |
assert name is None | |
else: | |
x = model.get_output_embeddings() | |
assert x is None | |
name = model.get_bias() | |
assert name is None | |
def test_gpt2_sequence_classification_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_gpt2_for_sequence_classification(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = TFGPT2Model.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
# overwrite from common since ONNX runtime optimization doesn't work with tf.gather() when the argument | |
# `batch_dims` > 0" | |
def test_onnx_runtime_optimize(self): | |
if not self.test_onnx: | |
return | |
import onnxruntime | |
import tf2onnx | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
# Skip these 2 classes which uses `tf.gather` with `batch_dims=1` | |
if model_class in [TFGPT2ForSequenceClassification, TFGPT2DoubleHeadsModel]: | |
continue | |
model = model_class(config) | |
model(model.dummy_inputs) | |
onnx_model_proto, _ = tf2onnx.convert.from_keras(model, opset=self.onnx_min_opset) | |
onnxruntime.InferenceSession(onnx_model_proto.SerializeToString()) | |
# TODO (Joao): fix me | |
def test_onnx_compliancy(self): | |
pass | |
class TFGPT2ModelLanguageGenerationTest(unittest.TestCase): | |
def test_lm_generate_greedy_distilgpt2_batch_special(self): | |
model = TFGPT2LMHeadModel.from_pretrained("distilgpt2") | |
tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2") | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.padding_side = "left" | |
sentences = ["Today is a beautiful day and", "Yesterday was"] | |
input_ids = tokenizer(sentences, return_tensors="tf", padding=True) | |
generation_kwargs = { | |
"bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids], | |
"no_repeat_ngram_size": 2, | |
"do_sample": False, | |
"repetition_penalty": 1.3, | |
} | |
output_ids = model.generate(**input_ids, **generation_kwargs) | |
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
expected_output_string = [ | |
"Today is a beautiful day and I am so happy to be able take part in this amazing event.", | |
"Yesterday was a very interesting time for the world to see how much of this is", | |
] | |
self.assertListEqual(output_strings, expected_output_string) | |
def test_lm_generate_sample_distilgpt2_batch_special(self): | |
model = TFGPT2LMHeadModel.from_pretrained("distilgpt2") | |
tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2") | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.padding_side = "left" | |
sentences = ["Today is a beautiful day and", "Yesterday was"] | |
input_ids = tokenizer(sentences, return_tensors="tf", padding=True) | |
generation_kwargs = { | |
"do_sample": True, | |
"bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids], | |
"no_repeat_ngram_size": 2, | |
"repetition_penalty": 1.3, | |
"temperature": 1.5, | |
"top_k": 500, | |
"top_p": 0.9, | |
"seed": [42, 0], # seed set -> deterministic sampling sequence -> deterministic generation | |
} | |
# forces the generation to happen on CPU, to avoid GPU-related quirks | |
with tf.device(":/CPU:0"): | |
output_ids = model.generate(**input_ids, **generation_kwargs) | |
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
expected_output_string = [ | |
"Today is a beautiful day and we will make you feel very hot/terrific in all your", | |
"Yesterday was known by national television networks as Le Big Show or Wild Dog Jeopard", | |
] | |
self.assertListEqual(output_strings, expected_output_string) | |
def test_lm_generate_greedy_distilgpt2_beam_search_special(self): | |
model = TFGPT2LMHeadModel.from_pretrained("distilgpt2") | |
tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2") | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.padding_side = "left" | |
sentences = ["Today is a beautiful day and", "Yesterday was"] | |
input_ids = tokenizer(sentences, return_tensors="tf", padding=True) | |
generation_kwargs = { | |
"bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids], | |
"no_repeat_ngram_size": 2, | |
"do_sample": False, | |
"num_beams": 2, | |
} | |
output_ids = model.generate(**input_ids, **generation_kwargs) | |
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
expected_output_string = [ | |
"Today is a beautiful day and a great day for all of us.\n\nI’m", | |
"Yesterday was the first time that a person has been arrested in the United States for", | |
] | |
self.assertListEqual(output_strings, expected_output_string) | |
def test_lm_generate_distilgpt2_left_padding(self): | |
"""Tests that the generated text is the same, regarless of left padding""" | |
model = TFGPT2LMHeadModel.from_pretrained("distilgpt2") | |
tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2") | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.padding_side = "left" | |
generation_kwargs = { | |
"bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids], | |
"no_repeat_ngram_size": 2, | |
"do_sample": False, | |
"repetition_penalty": 1.3, | |
} | |
expected_output_string = ( | |
"Today is a beautiful day and I am so happy to be able take part in this amazing event." | |
) | |
sentences = ["Today is a beautiful day and"] | |
input_ids = tokenizer(sentences, return_tensors="tf", padding=True) | |
# using default length | |
output_ids = model.generate(**input_ids, **generation_kwargs) | |
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
self.assertEqual(output_strings[0], expected_output_string) | |
sentences = ["Today is a beautiful day and", "This is a very long input that we absolutely don't care about"] | |
input_ids = tokenizer(sentences, return_tensors="tf", padding=True) | |
# longer max length to capture the full length (remember: it is left padded) | |
output_ids = model.generate(**input_ids, **generation_kwargs, max_length=27) | |
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
self.assertEqual(output_strings[0], expected_output_string) | |
def test_lm_generate_gpt2_greedy_xla(self): | |
model = TFGPT2LMHeadModel.from_pretrained("gpt2") | |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.padding_side = "left" | |
sentences = ["The dog", "The flying machine"] | |
expected_output_strings = [ | |
"The dog was found in a field near the intersection of West and West Streets.\n\nThe", | |
"The flying machine is a small, lightweight, and lightweight aircraft that can be used for any type of", | |
] | |
input_ids = tokenizer(sentences, return_tensors="tf", padding=True) | |
output_ids = model.generate(**input_ids, do_sample=False) | |
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
self.assertListEqual(output_strings, expected_output_strings) | |
xla_generate = tf.function(model.generate, jit_compile=True) | |
output_ids = xla_generate(**input_ids, do_sample=False) | |
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
self.assertListEqual(output_strings, expected_output_strings) | |
def test_lm_generate_gpt2_sample_xla(self): | |
# NOTE: due to the small numerical differences that are natural when we compile to XLA, sampling the same | |
# output out of the same seed is far from guaranteed. We can, however, confirm that the results are sensible | |
# and that we can seed both versions. | |
# forces the generation to happen on CPU, to avoid GPU-related quirks | |
with tf.device(":/CPU:0"): | |
model = TFGPT2LMHeadModel.from_pretrained("gpt2") | |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.padding_side = "left" | |
sentence = ["The dog", "The flying machine"] | |
expected_output_string = [ | |
"The dog owner asked why did our vet decide there needed to be extra ventilation inside because most" | |
" puppies", | |
"The flying machine was made by an artist who found it difficult to control it as it did not use", | |
] | |
expected_output_string_xla = [ | |
"The dog has been named in connection with the murder of a 20-year-old man in", | |
"The flying machine is a new and improved system to operate and operate a new system and system " | |
"system system", | |
] | |
input_ids = tokenizer(sentence, return_tensors="tf", padding=True) | |
output_ids = model.generate(**input_ids, do_sample=True, seed=[7, 0]) | |
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
self.assertListEqual(output_strings, expected_output_string) | |
xla_generate = tf.function(model.generate, jit_compile=True) | |
output_ids = xla_generate(**input_ids, do_sample=True, seed=[7, 0]) | |
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
self.assertListEqual(output_strings, expected_output_string_xla) | |
def test_lm_generate_gpt2_beam_search_xla(self): | |
model = TFGPT2LMHeadModel.from_pretrained("gpt2") | |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.padding_side = "left" | |
sentences = ["The dog", "The flying machine"] | |
expected_output_strings = [ | |
"The dog was found in the backyard of a home in the 6500 block of South Main Street", | |
"The flying machine is a very powerful machine, but it's not a very powerful machine. It's", | |
] | |
input_ids = tokenizer(sentences, return_tensors="tf", padding=True) | |
output_ids = model.generate(**input_ids, do_sample=False, num_beams=2) | |
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
self.assertListEqual(output_strings, expected_output_strings) | |
xla_generate = tf.function(model.generate, jit_compile=True) | |
output_ids = xla_generate(**input_ids, do_sample=False, num_beams=2) | |
output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
self.assertListEqual(output_strings, expected_output_strings) | |
def test_contrastive_search_gpt2(self): | |
article = ( | |
"DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research " | |
"laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based" | |
) | |
gpt2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2-large") | |
gpt2_model = TFGPT2LMHeadModel.from_pretrained("gpt2-large") | |
input_ids = gpt2_tokenizer(article, return_tensors="tf") | |
outputs = gpt2_model.generate(**input_ids, penalty_alpha=0.6, top_k=4, max_length=256) | |
generated_text = gpt2_tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
self.assertListEqual( | |
generated_text, | |
[ | |
"DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research " | |
"laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based in London, " | |
"United Kingdom\n\nGoogle has a lot of data on its users and uses it to improve its products, such as " | |
"Google Now, which helps users find the information they're looking for on the web. But the company " | |
"is not the only one to collect data on its users. Facebook, for example, has its own facial " | |
"recognition technology, as well as a database of millions of photos that it uses to personalize its " | |
"News Feed.\n\nFacebook's use of data is a hot topic in the tech industry, with privacy advocates " | |
"concerned about the company's ability to keep users' information private. In a blog post last " | |
'year, Facebook CEO Mark Zuckerberg said his company would "do our best to be transparent about our ' | |
'data use and how we use it."\n\n"We have made it clear that we do not sell or share your data with ' | |
'third parties," Zuckerberg wrote. "If you have questions or concerns, please reach out to us at ' | |
'[email protected]."\n\nGoogle declined to comment on the privacy implications of its use of data, ' | |
"but said in a statement to The Associated Press that" | |
], | |
) | |
def test_contrastive_search_gpt2_xla(self): | |
article = ( | |
"DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research " | |
"laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based" | |
) | |
gpt2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2-large") | |
gpt2_model = TFGPT2LMHeadModel.from_pretrained("gpt2-large") | |
input_ids = gpt2_tokenizer(article, return_tensors="tf") | |
xla_generate = tf.function(gpt2_model.generate, jit_compile=True) | |
outputs = xla_generate(**input_ids, penalty_alpha=0.6, top_k=4, max_length=256) | |
generated_text = gpt2_tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
self.assertListEqual( | |
generated_text, | |
[ | |
"DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research " | |
"laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based in London, " | |
"United Kingdom\n\nGoogle has a lot of data on its users and uses it to improve its products, such as " | |
"Google Now, which helps users find the information they're looking for on the web. But the company " | |
"is not the only one to collect data on its users. Facebook, for example, has its own facial " | |
"recognition technology, as well as a database of millions of photos that it uses to personalize its " | |
"News Feed.\n\nFacebook's use of data is a hot topic in the tech industry, with privacy advocates " | |
"concerned about the company's ability to keep users' information private. In a blog post last " | |
'year, Facebook CEO Mark Zuckerberg said his company would "do our best to be transparent about our ' | |
'data use and how we use it."\n\n"We have made it clear that we do not sell or share your data with ' | |
'third parties," Zuckerberg wrote. "If you have questions or concerns, please reach out to us at ' | |
'[email protected]."\n\nGoogle declined to comment on the privacy implications of its use of data, ' | |
"but said in a statement to The Associated Press that" | |
], | |
) | |