Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
import unittest | |
from huggingface_hub import hf_hub_download | |
from transformers import GitConfig, GitProcessor, GitVisionConfig, is_torch_available, is_vision_available | |
from transformers.models.auto import get_values | |
from transformers.testing_utils import require_torch, require_vision, slow, torch_device | |
from ...generation.test_utils import GenerationTesterMixin | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from torch import nn | |
from transformers import MODEL_FOR_CAUSAL_LM_MAPPING, GitForCausalLM, GitModel, GitVisionModel | |
from transformers.models.git.modeling_git import GIT_PRETRAINED_MODEL_ARCHIVE_LIST | |
if is_vision_available(): | |
from PIL import Image | |
class GitVisionModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=12, | |
image_size=32, | |
patch_size=16, | |
num_channels=3, | |
is_training=True, | |
hidden_size=32, | |
projection_dim=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
dropout=0.1, | |
attention_dropout=0.1, | |
initializer_range=0.02, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.is_training = is_training | |
self.hidden_size = hidden_size | |
self.projection_dim = projection_dim | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.initializer_range = initializer_range | |
self.scope = scope | |
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) | |
num_patches = (image_size // patch_size) ** 2 | |
self.seq_length = num_patches + 1 | |
def prepare_config_and_inputs(self): | |
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
config = self.get_config() | |
return config, pixel_values | |
def get_config(self): | |
return GitVisionConfig( | |
image_size=self.image_size, | |
patch_size=self.patch_size, | |
num_channels=self.num_channels, | |
hidden_size=self.hidden_size, | |
projection_dim=self.projection_dim, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
dropout=self.dropout, | |
attention_dropout=self.attention_dropout, | |
initializer_range=self.initializer_range, | |
) | |
def create_and_check_model(self, config, pixel_values): | |
model = GitVisionModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
result = model(pixel_values) | |
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) | |
image_size = (self.image_size, self.image_size) | |
patch_size = (self.patch_size, self.patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, pixel_values = config_and_inputs | |
inputs_dict = {"pixel_values": pixel_values} | |
return config, inputs_dict | |
class GitVisionModelTest(ModelTesterMixin, unittest.TestCase): | |
""" | |
Here we also overwrite some of the tests of test_modeling_common.py, as GIT does not use input_ids, inputs_embeds, | |
attention_mask and seq_length. | |
""" | |
all_model_classes = (GitVisionModel,) if is_torch_available() else () | |
fx_compatible = True | |
test_pruning = False | |
test_resize_embeddings = False | |
test_head_masking = False | |
def setUp(self): | |
self.model_tester = GitVisionModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=GitVisionConfig, has_text_modality=False, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_inputs_embeds(self): | |
pass | |
def test_model_common_attributes(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) | |
x = model.get_output_embeddings() | |
self.assertTrue(x is None or isinstance(x, nn.Linear)) | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["pixel_values"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_training(self): | |
pass | |
def test_training_gradient_checkpointing(self): | |
pass | |
def test_save_load_fast_init_from_base(self): | |
pass | |
def test_save_load_fast_init_to_base(self): | |
pass | |
def test_model_from_pretrained(self): | |
for model_name in GIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = GitVisionModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class GitModelTester: | |
def __init__( | |
self, | |
parent, | |
num_channels=3, | |
image_size=32, | |
patch_size=16, | |
batch_size=13, | |
text_seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_labels=True, | |
vocab_size=99, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
initializer_range=0.02, | |
num_labels=3, | |
scope=None, | |
): | |
self.parent = parent | |
self.num_channels = num_channels | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.batch_size = batch_size | |
self.text_seq_length = text_seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.initializer_range = initializer_range | |
self.num_labels = num_labels | |
self.scope = scope | |
# make sure the BOS, EOS and PAD tokens are within the vocab | |
self.bos_token_id = vocab_size - 1 | |
self.eos_token_id = vocab_size - 1 | |
self.pad_token_id = vocab_size - 1 | |
# for GIT, the sequence length is the sum of the text and patch tokens, + 1 due to the CLS token | |
self.seq_length = self.text_seq_length + int((self.image_size / self.patch_size) ** 2) + 1 | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.text_seq_length]) | |
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
config = self.get_config() | |
return config, input_ids, input_mask, pixel_values | |
def get_config(self): | |
""" | |
Returns a tiny configuration by default. | |
""" | |
return GitConfig( | |
vision_config={ | |
"num_channels": self.num_channels, | |
"image_size": self.image_size, | |
"patch_size": self.patch_size, | |
}, | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
initializer_range=self.initializer_range, | |
bos_token_id=self.bos_token_id, | |
eos_token_id=self.eos_token_id, | |
pad_token_id=self.pad_token_id, | |
) | |
def create_and_check_model(self, config, input_ids, input_mask, pixel_values): | |
model = GitModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
# inference with pixel values | |
result = model(input_ids, attention_mask=input_mask, pixel_values=pixel_values) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
# inference without pixel values | |
result = model(input_ids, attention_mask=input_mask) | |
result = model(input_ids) | |
self.parent.assertEqual( | |
result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size) | |
) | |
def create_and_check_for_causal_lm(self, config, input_ids, input_mask, pixel_values): | |
model = GitForCausalLM(config=config) | |
model.to(torch_device) | |
model.eval() | |
# inference with pixel values | |
result = model(input_ids, attention_mask=input_mask, pixel_values=pixel_values) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
# inference without pixel values | |
result = model(input_ids, attention_mask=input_mask) | |
result = model(input_ids) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.vocab_size)) | |
# training | |
result = model(input_ids, attention_mask=input_mask, pixel_values=pixel_values, labels=input_ids) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
self.parent.assertEqual(result.loss.shape, ()) | |
self.parent.assertTrue(result.loss.item() > 0) | |
def _test_beam_search_generate(self, config, input_ids, input_mask, pixel_values): | |
model = GitForCausalLM(config=config) | |
model.to(torch_device) | |
model.eval() | |
# generate | |
generated_ids = model.generate( | |
input_ids, | |
attention_mask=input_mask, | |
pixel_values=pixel_values, | |
do_sample=False, | |
max_length=20, | |
num_beams=2, | |
num_return_sequences=2, | |
) | |
self.parent.assertEqual(generated_ids.shape, (self.batch_size * 2, 20)) | |
def _test_batched_generate_captioning(self, config, input_ids, input_mask, pixel_values): | |
model = GitForCausalLM(config=config) | |
model.to(torch_device) | |
model.eval() | |
# generate | |
generated_ids = model.generate( | |
input_ids=None, # captioning -> no input_ids | |
attention_mask=None, | |
pixel_values=pixel_values, | |
do_sample=False, | |
max_length=20, | |
num_beams=2, | |
num_return_sequences=2, | |
) | |
self.parent.assertEqual(generated_ids.shape, (self.batch_size * 2, 20)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
input_mask, | |
pixel_values, | |
) = config_and_inputs | |
inputs_dict = { | |
"input_ids": input_ids, | |
"attention_mask": input_mask, | |
"pixel_values": pixel_values, | |
} | |
return config, inputs_dict | |
class GitModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = (GitModel, GitForCausalLM) if is_torch_available() else () | |
all_generative_model_classes = (GitForCausalLM,) if is_torch_available() else () | |
pipeline_model_mapping = ( | |
{"feature-extraction": GitModel, "text-generation": GitForCausalLM} if is_torch_available() else {} | |
) | |
fx_compatible = False | |
test_torchscript = False | |
# special case for GitForCausalLM model | |
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): | |
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) | |
if return_labels: | |
if model_class in get_values(MODEL_FOR_CAUSAL_LM_MAPPING): | |
inputs_dict["labels"] = torch.zeros( | |
(self.model_tester.batch_size, self.model_tester.text_seq_length), | |
dtype=torch.long, | |
device=torch_device, | |
) | |
return inputs_dict | |
def setUp(self): | |
self.model_tester = GitModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=GitConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_for_causal_lm(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) | |
def test_beam_search_generate(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester._test_beam_search_generate(*config_and_inputs) | |
def test_batched_generate_captioning(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester._test_batched_generate_captioning(*config_and_inputs) | |
def test_model_various_embeddings(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
for type in ["absolute", "relative_key", "relative_key_query"]: | |
config_and_inputs[0].position_embedding_type = type | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in GIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = GitModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
def test_beam_search_generate_dict_outputs_use_cache(self): | |
pass | |
def test_contrastive_generate(self): | |
pass | |
def test_contrastive_generate_dict_outputs_use_cache(self): | |
pass | |
def test_greedy_generate_dict_outputs_use_cache(self): | |
pass | |
class GitModelIntegrationTest(unittest.TestCase): | |
def test_forward_pass(self): | |
processor = GitProcessor.from_pretrained("microsoft/git-base") | |
model = GitForCausalLM.from_pretrained("microsoft/git-base") | |
model.to(torch_device) | |
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
inputs = processor(images=image, text="hello world", return_tensors="pt").to(torch_device) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
expected_shape = torch.Size((1, 201, 30522)) | |
self.assertEqual(outputs.logits.shape, expected_shape) | |
expected_slice = torch.tensor( | |
[[-0.9514, -0.9512, -0.9507], [-0.5454, -0.5453, -0.5453], [-0.8862, -0.8857, -0.8848]], | |
device=torch_device, | |
) | |
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice, atol=1e-4)) | |
def test_inference_image_captioning(self): | |
processor = GitProcessor.from_pretrained("microsoft/git-base") | |
model = GitForCausalLM.from_pretrained("microsoft/git-base") | |
model.to(torch_device) | |
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
inputs = processor(images=image, return_tensors="pt") | |
pixel_values = inputs.pixel_values.to(torch_device) | |
outputs = model.generate( | |
pixel_values=pixel_values, max_length=20, output_scores=True, return_dict_in_generate=True | |
) | |
generated_caption = processor.batch_decode(outputs.sequences, skip_special_tokens=True)[0] | |
expected_shape = torch.Size((1, 9)) | |
self.assertEqual(outputs.sequences.shape, expected_shape) | |
self.assertEquals(generated_caption, "two cats laying on a pink blanket") | |
self.assertTrue(outputs.scores[-1].shape, expected_shape) | |
expected_slice = torch.tensor([[-0.8805, -0.8803, -0.8799]], device=torch_device) | |
self.assertTrue(torch.allclose(outputs.scores[-1][0, :3], expected_slice, atol=1e-4)) | |
def test_visual_question_answering(self): | |
processor = GitProcessor.from_pretrained("microsoft/git-base-textvqa") | |
model = GitForCausalLM.from_pretrained("microsoft/git-base-textvqa") | |
model.to(torch_device) | |
# prepare image | |
file_path = hf_hub_download(repo_id="nielsr/textvqa-sample", filename="bus.png", repo_type="dataset") | |
image = Image.open(file_path).convert("RGB") | |
inputs = processor(images=image, return_tensors="pt") | |
pixel_values = inputs.pixel_values.to(torch_device) | |
# prepare question | |
question = "what does the front of the bus say at the top?" | |
input_ids = processor(text=question, add_special_tokens=False).input_ids | |
input_ids = [processor.tokenizer.cls_token_id] + input_ids | |
input_ids = torch.tensor(input_ids).unsqueeze(0).to(torch_device) | |
generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=20) | |
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
expected_shape = torch.Size((1, 15)) | |
self.assertEqual(generated_ids.shape, expected_shape) | |
self.assertEquals(generated_caption, "what does the front of the bus say at the top? special") | |
def test_batched_generation(self): | |
processor = GitProcessor.from_pretrained("microsoft/git-base-coco") | |
model = GitForCausalLM.from_pretrained("microsoft/git-base-coco") | |
model.to(torch_device) | |
# create batch of size 2 | |
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
inputs = processor(images=[image, image], return_tensors="pt") | |
pixel_values = inputs.pixel_values.to(torch_device) | |
# we have to prepare `input_ids` with the same batch size as `pixel_values` | |
start_token_id = model.config.bos_token_id | |
input_ids = torch.tensor([[start_token_id], [start_token_id]], device=torch_device) | |
generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50) | |
generated_captions = processor.batch_decode(generated_ids, skip_special_tokens=True) | |
self.assertEquals(generated_captions, ["two cats sleeping on a pink blanket next to remotes."] * 2) | |