Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2020 HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import FunnelConfig, is_tf_available | |
from transformers.testing_utils import require_tf, tooslow | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_tf_available(): | |
import tensorflow as tf | |
from transformers import ( | |
TFFunnelBaseModel, | |
TFFunnelForMaskedLM, | |
TFFunnelForMultipleChoice, | |
TFFunnelForPreTraining, | |
TFFunnelForQuestionAnswering, | |
TFFunnelForSequenceClassification, | |
TFFunnelForTokenClassification, | |
TFFunnelModel, | |
) | |
class TFFunnelModelTester: | |
"""You can also import this e.g, from .test_modeling_funnel import FunnelModelTester""" | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_token_type_ids=True, | |
use_labels=True, | |
vocab_size=99, | |
block_sizes=[1, 1, 2], | |
num_decoder_layers=1, | |
d_model=32, | |
n_head=4, | |
d_head=8, | |
d_inner=37, | |
hidden_act="gelu_new", | |
hidden_dropout=0.1, | |
attention_dropout=0.1, | |
activation_dropout=0.0, | |
max_position_embeddings=512, | |
type_vocab_size=3, | |
initializer_std=0.02, # Set to a smaller value, so we can keep the small error threshold (1e-5) in the test | |
num_labels=3, | |
num_choices=4, | |
scope=None, | |
base=False, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_token_type_ids = use_token_type_ids | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.block_sizes = block_sizes | |
self.num_decoder_layers = num_decoder_layers | |
self.d_model = d_model | |
self.n_head = n_head | |
self.d_head = d_head | |
self.d_inner = d_inner | |
self.hidden_act = hidden_act | |
self.hidden_dropout = hidden_dropout | |
self.attention_dropout = attention_dropout | |
self.activation_dropout = activation_dropout | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = 2 | |
self.num_labels = num_labels | |
self.num_choices = num_choices | |
self.scope = scope | |
self.initializer_std = initializer_std | |
# Used in the tests to check the size of the first attention layer | |
self.num_attention_heads = n_head | |
# Used in the tests to check the size of the first hidden state | |
self.hidden_size = self.d_model | |
# Used in the tests to check the number of output hidden states/attentions | |
self.num_hidden_layers = sum(self.block_sizes) + (0 if base else self.num_decoder_layers) | |
# FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with | |
# the last hidden state of the first block (which is the first hidden state of the decoder). | |
if not base: | |
self.expected_num_hidden_layers = self.num_hidden_layers + 2 | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
sequence_labels = None | |
token_labels = None | |
choice_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = FunnelConfig( | |
vocab_size=self.vocab_size, | |
block_sizes=self.block_sizes, | |
num_decoder_layers=self.num_decoder_layers, | |
d_model=self.d_model, | |
n_head=self.n_head, | |
d_head=self.d_head, | |
d_inner=self.d_inner, | |
hidden_act=self.hidden_act, | |
hidden_dropout=self.hidden_dropout, | |
attention_dropout=self.attention_dropout, | |
activation_dropout=self.activation_dropout, | |
max_position_embeddings=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
initializer_std=self.initializer_std, | |
) | |
return ( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) | |
def create_and_check_model( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
): | |
model = TFFunnelModel(config=config) | |
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
result = model(inputs) | |
inputs = [input_ids, input_mask] | |
result = model(inputs) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.d_model)) | |
config.truncate_seq = False | |
model = TFFunnelModel(config=config) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.d_model)) | |
config.separate_cls = False | |
model = TFFunnelModel(config=config) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.d_model)) | |
def create_and_check_base_model( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
): | |
model = TFFunnelBaseModel(config=config) | |
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
result = model(inputs) | |
inputs = [input_ids, input_mask] | |
result = model(inputs) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, 2, self.d_model)) | |
config.truncate_seq = False | |
model = TFFunnelBaseModel(config=config) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, 3, self.d_model)) | |
config.separate_cls = False | |
model = TFFunnelBaseModel(config=config) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, 2, self.d_model)) | |
def create_and_check_for_pretraining( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
): | |
model = TFFunnelForPreTraining(config=config) | |
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
result = model(inputs) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length)) | |
def create_and_check_for_masked_lm( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
): | |
model = TFFunnelForMaskedLM(config=config) | |
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
result = model(inputs) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def create_and_check_for_sequence_classification( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
): | |
config.num_labels = self.num_labels | |
model = TFFunnelForSequenceClassification(config=config) | |
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
result = model(inputs) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
def create_and_check_for_multiple_choice( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
): | |
config.num_choices = self.num_choices | |
model = TFFunnelForMultipleChoice(config=config) | |
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) | |
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) | |
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) | |
inputs = { | |
"input_ids": multiple_choice_inputs_ids, | |
"attention_mask": multiple_choice_input_mask, | |
"token_type_ids": multiple_choice_token_type_ids, | |
} | |
result = model(inputs) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) | |
def create_and_check_for_token_classification( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
): | |
config.num_labels = self.num_labels | |
model = TFFunnelForTokenClassification(config=config) | |
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
result = model(inputs) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
def create_and_check_for_question_answering( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
): | |
model = TFFunnelForQuestionAnswering(config=config) | |
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
result = model(inputs) | |
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} | |
return config, inputs_dict | |
class TFFunnelModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
( | |
TFFunnelModel, | |
TFFunnelForMaskedLM, | |
TFFunnelForPreTraining, | |
TFFunnelForQuestionAnswering, | |
TFFunnelForTokenClassification, | |
) | |
if is_tf_available() | |
else () | |
) | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": (TFFunnelBaseModel, TFFunnelModel), | |
"fill-mask": TFFunnelForMaskedLM, | |
"question-answering": TFFunnelForQuestionAnswering, | |
"text-classification": TFFunnelForSequenceClassification, | |
"token-classification": TFFunnelForTokenClassification, | |
"zero-shot": TFFunnelForSequenceClassification, | |
} | |
if is_tf_available() | |
else {} | |
) | |
test_head_masking = False | |
test_onnx = False | |
def setUp(self): | |
self.model_tester = TFFunnelModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=FunnelConfig) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_for_pretraining(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_pretraining(*config_and_inputs) | |
def test_for_masked_lm(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) | |
def test_for_token_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_token_classification(*config_and_inputs) | |
def test_for_question_answering(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_question_answering(*config_and_inputs) | |
def test_saved_model_creation(self): | |
pass | |
def test_compile_tf_model(self): | |
# This test fails the CI. TODO Lysandre re-enable it | |
pass | |
class TFFunnelBaseModelTest(TFModelTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
(TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () | |
) | |
test_head_masking = False | |
test_onnx = False | |
def setUp(self): | |
self.model_tester = TFFunnelModelTester(self, base=True) | |
self.config_tester = ConfigTester(self, config_class=FunnelConfig) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_base_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_base_model(*config_and_inputs) | |
def test_for_sequence_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) | |
def test_for_multiple_choice(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) | |
def test_saved_model_creation(self): | |
pass | |