Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2020 HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import FunnelConfig, FunnelTokenizer, is_torch_available | |
from transformers.models.auto import get_values | |
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, ids_tensor | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
MODEL_FOR_PRETRAINING_MAPPING, | |
FunnelBaseModel, | |
FunnelForMaskedLM, | |
FunnelForMultipleChoice, | |
FunnelForPreTraining, | |
FunnelForQuestionAnswering, | |
FunnelForSequenceClassification, | |
FunnelForTokenClassification, | |
FunnelModel, | |
) | |
class FunnelModelTester: | |
"""You can also import this e.g, from .test_modeling_funnel import FunnelModelTester""" | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_token_type_ids=True, | |
use_labels=True, | |
vocab_size=99, | |
block_sizes=[1, 1, 2], | |
num_decoder_layers=1, | |
d_model=32, | |
n_head=4, | |
d_head=8, | |
d_inner=37, | |
hidden_act="gelu_new", | |
hidden_dropout=0.1, | |
attention_dropout=0.1, | |
activation_dropout=0.0, | |
max_position_embeddings=512, | |
type_vocab_size=3, | |
initializer_std=0.02, # Set to a smaller value, so we can keep the small error threshold (1e-5) in the test | |
num_labels=3, | |
num_choices=4, | |
scope=None, | |
base=False, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_token_type_ids = use_token_type_ids | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.block_sizes = block_sizes | |
self.num_decoder_layers = num_decoder_layers | |
self.d_model = d_model | |
self.n_head = n_head | |
self.d_head = d_head | |
self.d_inner = d_inner | |
self.hidden_act = hidden_act | |
self.hidden_dropout = hidden_dropout | |
self.attention_dropout = attention_dropout | |
self.activation_dropout = activation_dropout | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = 2 | |
self.num_labels = num_labels | |
self.num_choices = num_choices | |
self.scope = scope | |
self.initializer_std = initializer_std | |
# Used in the tests to check the size of the first attention layer | |
self.num_attention_heads = n_head | |
# Used in the tests to check the size of the first hidden state | |
self.hidden_size = self.d_model | |
# Used in the tests to check the number of output hidden states/attentions | |
self.num_hidden_layers = sum(self.block_sizes) + (0 if base else self.num_decoder_layers) | |
# FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with | |
# the last hidden state of the first block (which is the first hidden state of the decoder). | |
if not base: | |
self.expected_num_hidden_layers = self.num_hidden_layers + 2 | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
sequence_labels = None | |
token_labels = None | |
choice_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
fake_token_labels = ids_tensor([self.batch_size, self.seq_length], 1) | |
config = self.get_config() | |
return ( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
fake_token_labels, | |
) | |
def get_config(self): | |
return FunnelConfig( | |
vocab_size=self.vocab_size, | |
block_sizes=self.block_sizes, | |
num_decoder_layers=self.num_decoder_layers, | |
d_model=self.d_model, | |
n_head=self.n_head, | |
d_head=self.d_head, | |
d_inner=self.d_inner, | |
hidden_act=self.hidden_act, | |
hidden_dropout=self.hidden_dropout, | |
attention_dropout=self.attention_dropout, | |
activation_dropout=self.activation_dropout, | |
max_position_embeddings=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
initializer_std=self.initializer_std, | |
) | |
def create_and_check_model( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
fake_token_labels, | |
): | |
model = FunnelModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
result = model(input_ids, token_type_ids=token_type_ids) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.d_model)) | |
model.config.truncate_seq = False | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.d_model)) | |
model.config.separate_cls = False | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.d_model)) | |
def create_and_check_base_model( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
fake_token_labels, | |
): | |
model = FunnelBaseModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
result = model(input_ids, token_type_ids=token_type_ids) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, 2, self.d_model)) | |
model.config.truncate_seq = False | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, 3, self.d_model)) | |
model.config.separate_cls = False | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, 2, self.d_model)) | |
def create_and_check_for_pretraining( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
fake_token_labels, | |
): | |
config.num_labels = self.num_labels | |
model = FunnelForPreTraining(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=fake_token_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length)) | |
def create_and_check_for_masked_lm( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
fake_token_labels, | |
): | |
model = FunnelForMaskedLM(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def create_and_check_for_sequence_classification( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
fake_token_labels, | |
): | |
config.num_labels = self.num_labels | |
model = FunnelForSequenceClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
def create_and_check_for_multiple_choice( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
fake_token_labels, | |
): | |
config.num_choices = self.num_choices | |
model = FunnelForMultipleChoice(config=config) | |
model.to(torch_device) | |
model.eval() | |
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
result = model( | |
multiple_choice_inputs_ids, | |
attention_mask=multiple_choice_input_mask, | |
token_type_ids=multiple_choice_token_type_ids, | |
labels=choice_labels, | |
) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) | |
def create_and_check_for_token_classification( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
fake_token_labels, | |
): | |
config.num_labels = self.num_labels | |
model = FunnelForTokenClassification(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
def create_and_check_for_question_answering( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
fake_token_labels, | |
): | |
model = FunnelForQuestionAnswering(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model( | |
input_ids, | |
attention_mask=input_mask, | |
token_type_ids=token_type_ids, | |
start_positions=sequence_labels, | |
end_positions=sequence_labels, | |
) | |
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
fake_token_labels, | |
) = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} | |
return config, inputs_dict | |
class FunnelModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
test_head_masking = False | |
test_pruning = False | |
all_model_classes = ( | |
( | |
FunnelModel, | |
FunnelForMaskedLM, | |
FunnelForPreTraining, | |
FunnelForQuestionAnswering, | |
FunnelForTokenClassification, | |
) | |
if is_torch_available() | |
else () | |
) | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": (FunnelBaseModel, FunnelModel), | |
"fill-mask": FunnelForMaskedLM, | |
"question-answering": FunnelForQuestionAnswering, | |
"text-classification": FunnelForSequenceClassification, | |
"token-classification": FunnelForTokenClassification, | |
"zero-shot": FunnelForSequenceClassification, | |
} | |
if is_torch_available() | |
else {} | |
) | |
# special case for ForPreTraining model | |
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): | |
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) | |
if return_labels: | |
if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING): | |
inputs_dict["labels"] = torch.zeros( | |
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device | |
) | |
return inputs_dict | |
def setUp(self): | |
self.model_tester = FunnelModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=FunnelConfig) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_for_pretraining(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_pretraining(*config_and_inputs) | |
def test_for_masked_lm(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) | |
def test_for_token_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_token_classification(*config_and_inputs) | |
def test_for_question_answering(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_question_answering(*config_and_inputs) | |
# overwrite from test_modeling_common | |
def _mock_init_weights(self, module): | |
if hasattr(module, "weight") and module.weight is not None: | |
module.weight.data.fill_(3) | |
if hasattr(module, "bias") and module.bias is not None: | |
module.bias.data.fill_(3) | |
for param in ["r_w_bias", "r_r_bias", "r_kernel", "r_s_bias", "seg_embed"]: | |
if hasattr(module, param) and getattr(module, param) is not None: | |
weight = getattr(module, param) | |
weight.data.fill_(3) | |
class FunnelBaseModelTest(ModelTesterMixin, unittest.TestCase): | |
test_head_masking = False | |
test_pruning = False | |
all_model_classes = ( | |
(FunnelBaseModel, FunnelForMultipleChoice, FunnelForSequenceClassification) if is_torch_available() else () | |
) | |
def setUp(self): | |
self.model_tester = FunnelModelTester(self, base=True) | |
self.config_tester = ConfigTester(self, config_class=FunnelConfig) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_base_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_base_model(*config_and_inputs) | |
def test_for_sequence_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) | |
def test_for_multiple_choice(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) | |
# overwrite from test_modeling_common | |
def test_training(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.return_dict = True | |
for model_class in self.all_model_classes: | |
if model_class.__name__ == "FunnelBaseModel": | |
continue | |
model = model_class(config) | |
model.to(torch_device) | |
model.train() | |
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
loss = model(**inputs).loss | |
loss.backward() | |
# overwrite from test_modeling_common | |
def _mock_init_weights(self, module): | |
if hasattr(module, "weight") and module.weight is not None: | |
module.weight.data.fill_(3) | |
if hasattr(module, "bias") and module.bias is not None: | |
module.bias.data.fill_(3) | |
for param in ["r_w_bias", "r_r_bias", "r_kernel", "r_s_bias", "seg_embed"]: | |
if hasattr(module, param) and getattr(module, param) is not None: | |
weight = getattr(module, param) | |
weight.data.fill_(3) | |
class FunnelModelIntegrationTest(unittest.TestCase): | |
def test_inference_tiny_model(self): | |
batch_size = 13 | |
sequence_length = 7 | |
input_ids = torch.arange(0, batch_size * sequence_length).long().reshape(batch_size, sequence_length) | |
lengths = [0, 1, 2, 3, 4, 5, 6, 4, 1, 3, 5, 0, 1] | |
token_type_ids = torch.tensor([[2] + [0] * a + [1] * (sequence_length - a - 1) for a in lengths]) | |
model = FunnelModel.from_pretrained("sgugger/funnel-random-tiny") | |
output = model(input_ids, token_type_ids=token_type_ids)[0].abs() | |
expected_output_sum = torch.tensor(2344.8352) | |
expected_output_mean = torch.tensor(0.8052) | |
self.assertTrue(torch.allclose(output.sum(), expected_output_sum, atol=1e-4)) | |
self.assertTrue(torch.allclose(output.mean(), expected_output_mean, atol=1e-4)) | |
attention_mask = torch.tensor([[1] * 7, [1] * 4 + [0] * 3] * 6 + [[0, 1, 1, 0, 0, 1, 1]]) | |
output = model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)[0].abs() | |
expected_output_sum = torch.tensor(2343.8425) | |
expected_output_mean = torch.tensor(0.8049) | |
self.assertTrue(torch.allclose(output.sum(), expected_output_sum, atol=1e-4)) | |
self.assertTrue(torch.allclose(output.mean(), expected_output_mean, atol=1e-4)) | |
def test_inference_model(self): | |
tokenizer = FunnelTokenizer.from_pretrained("huggingface/funnel-small") | |
model = FunnelModel.from_pretrained("huggingface/funnel-small") | |
inputs = tokenizer("Hello! I am the Funnel Transformer model.", return_tensors="pt") | |
output = model(**inputs)[0] | |
expected_output_sum = torch.tensor(235.7246) | |
expected_output_mean = torch.tensor(0.0256) | |
self.assertTrue(torch.allclose(output.sum(), expected_output_sum, atol=1e-4)) | |
self.assertTrue(torch.allclose(output.mean(), expected_output_mean, atol=1e-4)) | |