Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
import unittest | |
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES, FSMTTokenizer | |
from transformers.testing_utils import slow | |
from transformers.utils import cached_property | |
from ...test_tokenization_common import TokenizerTesterMixin | |
# using a different tiny model than the one used for default params defined in init to ensure proper testing | |
FSMT_TINY2 = "stas/tiny-wmt19-en-ru" | |
class FSMTTokenizationTest(TokenizerTesterMixin, unittest.TestCase): | |
tokenizer_class = FSMTTokenizer | |
test_rust_tokenizer = False | |
def setUp(self): | |
super().setUp() | |
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt | |
vocab = [ | |
"l", | |
"o", | |
"w", | |
"e", | |
"r", | |
"s", | |
"t", | |
"i", | |
"d", | |
"n", | |
"w</w>", | |
"r</w>", | |
"t</w>", | |
"lo", | |
"low", | |
"er</w>", | |
"low</w>", | |
"lowest</w>", | |
"newer</w>", | |
"wider</w>", | |
"<unk>", | |
] | |
vocab_tokens = dict(zip(vocab, range(len(vocab)))) | |
merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""] | |
self.langs = ["en", "ru"] | |
config = { | |
"langs": self.langs, | |
"src_vocab_size": 10, | |
"tgt_vocab_size": 20, | |
} | |
self.src_vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["src_vocab_file"]) | |
self.tgt_vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["tgt_vocab_file"]) | |
config_file = os.path.join(self.tmpdirname, "tokenizer_config.json") | |
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) | |
with open(self.src_vocab_file, "w") as fp: | |
fp.write(json.dumps(vocab_tokens)) | |
with open(self.tgt_vocab_file, "w") as fp: | |
fp.write(json.dumps(vocab_tokens)) | |
with open(self.merges_file, "w") as fp: | |
fp.write("\n".join(merges)) | |
with open(config_file, "w") as fp: | |
fp.write(json.dumps(config)) | |
def tokenizer_ru_en(self): | |
return FSMTTokenizer.from_pretrained("facebook/wmt19-ru-en") | |
def tokenizer_en_ru(self): | |
return FSMTTokenizer.from_pretrained("facebook/wmt19-en-ru") | |
def test_online_tokenizer_config(self): | |
"""this just tests that the online tokenizer files get correctly fetched and | |
loaded via its tokenizer_config.json and it's not slow so it's run by normal CI | |
""" | |
tokenizer = FSMTTokenizer.from_pretrained(FSMT_TINY2) | |
self.assertListEqual([tokenizer.src_lang, tokenizer.tgt_lang], ["en", "ru"]) | |
self.assertEqual(tokenizer.src_vocab_size, 21) | |
self.assertEqual(tokenizer.tgt_vocab_size, 21) | |
def test_full_tokenizer(self): | |
"""Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt""" | |
tokenizer = FSMTTokenizer(self.langs, self.src_vocab_file, self.tgt_vocab_file, self.merges_file) | |
text = "lower" | |
bpe_tokens = ["low", "er</w>"] | |
tokens = tokenizer.tokenize(text) | |
self.assertListEqual(tokens, bpe_tokens) | |
input_tokens = tokens + ["<unk>"] | |
input_bpe_tokens = [14, 15, 20] | |
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) | |
def test_sequence_builders(self): | |
tokenizer = self.tokenizer_ru_en | |
text = tokenizer.encode("sequence builders", add_special_tokens=False) | |
text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) | |
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) | |
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) | |
assert encoded_sentence == text + [2] | |
assert encoded_pair == text + [2] + text_2 + [2] | |
def test_match_encode_decode(self): | |
tokenizer_enc = self.tokenizer_en_ru | |
tokenizer_dec = self.tokenizer_ru_en | |
targets = [ | |
[ | |
"Here's a little song I wrote. Don't worry, be happy.", | |
[2470, 39, 11, 2349, 7222, 70, 5979, 7, 8450, 1050, 13160, 5, 26, 6445, 7, 2], | |
], | |
["This is it. No more. I'm done!", [132, 21, 37, 7, 1434, 86, 7, 70, 6476, 1305, 427, 2]], | |
] | |
# if data needs to be recreated or added, run: | |
# import torch | |
# model = torch.hub.load("pytorch/fairseq", "transformer.wmt19.en-ru", checkpoint_file="model4.pt", tokenizer="moses", bpe="fastbpe") | |
# for src_text, _ in targets: print(f"""[\n"{src_text}",\n {model.encode(src_text).tolist()}\n],""") | |
for src_text, tgt_input_ids in targets: | |
encoded_ids = tokenizer_enc.encode(src_text, return_tensors=None) | |
self.assertListEqual(encoded_ids, tgt_input_ids) | |
# and decode backward, using the reversed languages model | |
decoded_text = tokenizer_dec.decode(encoded_ids, skip_special_tokens=True) | |
self.assertEqual(decoded_text, src_text) | |
def test_tokenizer_lower(self): | |
tokenizer = FSMTTokenizer.from_pretrained("facebook/wmt19-ru-en", do_lower_case=True) | |
tokens = tokenizer.tokenize("USA is United States of America") | |
expected = ["us", "a</w>", "is</w>", "un", "i", "ted</w>", "st", "ates</w>", "of</w>", "am", "er", "ica</w>"] | |
self.assertListEqual(tokens, expected) | |
def test_torch_encode_plus_sent_to_model(self): | |
pass | |
def test_np_encode_plus_sent_to_model(self): | |
pass | |