Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch FNet model. """ | |
import unittest | |
from typing import Dict, List, Tuple | |
from transformers import FNetConfig, is_torch_available | |
from transformers.models.auto import get_values | |
from transformers.testing_utils import require_tokenizers, require_torch, slow, torch_device | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
MODEL_FOR_PRETRAINING_MAPPING, | |
FNetForMaskedLM, | |
FNetForMultipleChoice, | |
FNetForNextSentencePrediction, | |
FNetForPreTraining, | |
FNetForQuestionAnswering, | |
FNetForSequenceClassification, | |
FNetForTokenClassification, | |
FNetModel, | |
FNetTokenizerFast, | |
) | |
from transformers.models.fnet.modeling_fnet import ( | |
FNET_PRETRAINED_MODEL_ARCHIVE_LIST, | |
FNetBasicFourierTransform, | |
is_scipy_available, | |
) | |
# Override ConfigTester | |
class FNetConfigTester(ConfigTester): | |
def create_and_test_config_common_properties(self): | |
config = self.config_class(**self.inputs_dict) | |
if self.has_text_modality: | |
self.parent.assertTrue(hasattr(config, "vocab_size")) | |
self.parent.assertTrue(hasattr(config, "hidden_size")) | |
self.parent.assertTrue(hasattr(config, "num_hidden_layers")) | |
class FNetModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=True, | |
use_token_type_ids=True, | |
use_labels=True, | |
vocab_size=99, | |
hidden_size=32, | |
num_hidden_layers=5, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
num_labels=3, | |
num_choices=4, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_token_type_ids = use_token_type_ids | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.num_labels = num_labels | |
self.num_choices = num_choices | |
self.scope = scope | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
sequence_labels = None | |
token_labels = None | |
choice_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = self.get_config() | |
return config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels | |
def get_config(self): | |
return FNetConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
initializer_range=self.initializer_range, | |
tpu_short_seq_length=self.seq_length, | |
) | |
def create_and_check_fourier_transform(self, config): | |
hidden_states = floats_tensor([self.batch_size, self.seq_length, config.hidden_size]) | |
transform = FNetBasicFourierTransform(config) | |
fftn_output = transform(hidden_states) | |
config.use_tpu_fourier_optimizations = True | |
if is_scipy_available(): | |
transform = FNetBasicFourierTransform(config) | |
dft_output = transform(hidden_states) | |
config.max_position_embeddings = 4097 | |
transform = FNetBasicFourierTransform(config) | |
fft_output = transform(hidden_states) | |
if is_scipy_available(): | |
self.parent.assertTrue(torch.allclose(fftn_output[0][0], dft_output[0][0], atol=1e-4)) | |
self.parent.assertTrue(torch.allclose(fft_output[0][0], dft_output[0][0], atol=1e-4)) | |
self.parent.assertTrue(torch.allclose(fftn_output[0][0], fft_output[0][0], atol=1e-4)) | |
def create_and_check_model(self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels): | |
model = FNetModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, token_type_ids=token_type_ids) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
def create_and_check_for_pretraining( | |
self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels | |
): | |
model = FNetForPreTraining(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model( | |
input_ids, | |
token_type_ids=token_type_ids, | |
labels=token_labels, | |
next_sentence_label=sequence_labels, | |
) | |
self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) | |
def create_and_check_for_masked_lm( | |
self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels | |
): | |
model = FNetForMaskedLM(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, token_type_ids=token_type_ids, labels=token_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def create_and_check_for_next_sentence_prediction( | |
self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels | |
): | |
model = FNetForNextSentencePrediction(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model( | |
input_ids, | |
token_type_ids=token_type_ids, | |
next_sentence_label=sequence_labels, | |
) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) | |
def create_and_check_for_question_answering( | |
self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels | |
): | |
model = FNetForQuestionAnswering(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model( | |
input_ids, | |
token_type_ids=token_type_ids, | |
start_positions=sequence_labels, | |
end_positions=sequence_labels, | |
) | |
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
def create_and_check_for_sequence_classification( | |
self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels | |
): | |
config.num_labels = self.num_labels | |
model = FNetForSequenceClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, token_type_ids=token_type_ids, labels=sequence_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
def create_and_check_for_token_classification( | |
self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels | |
): | |
config.num_labels = self.num_labels | |
model = FNetForTokenClassification(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, token_type_ids=token_type_ids, labels=token_labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
def create_and_check_for_multiple_choice( | |
self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels | |
): | |
config.num_choices = self.num_choices | |
model = FNetForMultipleChoice(config=config) | |
model.to(torch_device) | |
model.eval() | |
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
result = model( | |
multiple_choice_inputs_ids, | |
token_type_ids=multiple_choice_token_type_ids, | |
labels=choice_labels, | |
) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
token_type_ids, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids} | |
return config, inputs_dict | |
class FNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
( | |
FNetModel, | |
FNetForPreTraining, | |
FNetForMaskedLM, | |
FNetForNextSentencePrediction, | |
FNetForMultipleChoice, | |
FNetForQuestionAnswering, | |
FNetForSequenceClassification, | |
FNetForTokenClassification, | |
) | |
if is_torch_available() | |
else () | |
) | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": FNetModel, | |
"fill-mask": FNetForMaskedLM, | |
"question-answering": FNetForQuestionAnswering, | |
"text-classification": FNetForSequenceClassification, | |
"token-classification": FNetForTokenClassification, | |
"zero-shot": FNetForSequenceClassification, | |
} | |
if is_torch_available() | |
else {} | |
) | |
# Skip Tests | |
test_pruning = False | |
test_head_masking = False | |
test_pruning = False | |
# TODO: Fix the failed tests | |
def is_pipeline_test_to_skip( | |
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name | |
): | |
if pipeline_test_casse_name == "QAPipelineTests": | |
return True | |
return False | |
# special case for ForPreTraining model | |
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): | |
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) | |
if return_labels: | |
if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING): | |
inputs_dict["labels"] = torch.zeros( | |
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device | |
) | |
inputs_dict["next_sentence_label"] = torch.zeros( | |
self.model_tester.batch_size, dtype=torch.long, device=torch_device | |
) | |
return inputs_dict | |
# Overriden Tests | |
def test_attention_outputs(self): | |
pass | |
def test_model_outputs_equivalence(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
def set_nan_tensor_to_zero(t): | |
t[t != t] = 0 | |
return t | |
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): | |
with torch.no_grad(): | |
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs) | |
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple() | |
def recursive_check(tuple_object, dict_object): | |
if isinstance(tuple_object, (List, Tuple)): | |
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): | |
recursive_check(tuple_iterable_value, dict_iterable_value) | |
elif isinstance(tuple_object, Dict): | |
for tuple_iterable_value, dict_iterable_value in zip( | |
tuple_object.values(), dict_object.values() | |
): | |
recursive_check(tuple_iterable_value, dict_iterable_value) | |
elif tuple_object is None: | |
return | |
else: | |
self.assertTrue( | |
torch.allclose( | |
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 | |
), | |
msg=( | |
"Tuple and dict output are not equal. Difference:" | |
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" | |
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" | |
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." | |
), | |
) | |
recursive_check(tuple_output, dict_output) | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
tuple_inputs = self._prepare_for_class(inputs_dict, model_class) | |
dict_inputs = self._prepare_for_class(inputs_dict, model_class) | |
check_equivalence(model, tuple_inputs, dict_inputs) | |
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
check_equivalence(model, tuple_inputs, dict_inputs) | |
# tuple_inputs = self._prepare_for_class(inputs_dict, model_class) | |
# dict_inputs = self._prepare_for_class(inputs_dict, model_class) | |
# check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) | |
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) | |
def test_retain_grad_hidden_states_attentions(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.output_hidden_states = True | |
config.output_attentions = True | |
# no need to test all models as different heads yield the same functionality | |
model_class = self.all_model_classes[0] | |
model = model_class(config) | |
model.to(torch_device) | |
inputs = self._prepare_for_class(inputs_dict, model_class) | |
outputs = model(**inputs) | |
output = outputs[0] | |
hidden_states = outputs.hidden_states[0] | |
hidden_states.retain_grad() | |
output.flatten()[0].backward(retain_graph=True) | |
self.assertIsNotNone(hidden_states.grad) | |
def setUp(self): | |
self.model_tester = FNetModelTester(self) | |
self.config_tester = FNetConfigTester(self, config_class=FNetConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_for_pretraining(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_pretraining(*config_and_inputs) | |
def test_for_masked_lm(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) | |
def test_for_multiple_choice(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) | |
def test_for_question_answering(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_question_answering(*config_and_inputs) | |
def test_for_sequence_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) | |
def test_for_token_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_token_classification(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in FNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = FNetModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class FNetModelIntegrationTest(unittest.TestCase): | |
def test_inference_for_masked_lm(self): | |
""" | |
For comparison: | |
1. Modify the pre-training model `__call__` to skip computing metrics and return masked_lm_output like so: | |
``` | |
... | |
sequence_output, pooled_output = EncoderModel( | |
self.config, random_seed=self.random_seed, name="encoder")( | |
input_ids, input_mask, type_ids, deterministic=deterministic) | |
masked_lm_output = nn.Dense( | |
self.config.d_emb, | |
kernel_init=default_kernel_init, | |
name="predictions_dense")( | |
sequence_output) | |
masked_lm_output = nn.gelu(masked_lm_output) | |
masked_lm_output = nn.LayerNorm( | |
epsilon=LAYER_NORM_EPSILON, name="predictions_layer_norm")( | |
masked_lm_output) | |
masked_lm_logits = layers.OutputProjection( | |
kernel=self._get_embedding_table(), name="predictions_output")( | |
masked_lm_output) | |
next_sentence_logits = layers.OutputProjection( | |
n_out=2, kernel_init=default_kernel_init, name="classification")( | |
pooled_output) | |
return masked_lm_logits | |
... | |
``` | |
2. Run the following: | |
>>> import jax.numpy as jnp | |
>>> import sentencepiece as spm | |
>>> from flax.training import checkpoints | |
>>> from f_net.models import PreTrainingModel | |
>>> from f_net.configs.pretraining import get_config, ModelArchitecture | |
>>> pretrained_params = checkpoints.restore_checkpoint('./f_net/f_net_checkpoint', None) # Location of original checkpoint | |
>>> pretrained_config = get_config() | |
>>> pretrained_config.model_arch = ModelArchitecture.F_NET | |
>>> vocab_filepath = "./f_net/c4_bpe_sentencepiece.model" # Location of the sentence piece model | |
>>> tokenizer = spm.SentencePieceProcessor() | |
>>> tokenizer.Load(vocab_filepath) | |
>>> with pretrained_config.unlocked(): | |
>>> pretrained_config.vocab_size = tokenizer.GetPieceSize() | |
>>> tokens = jnp.array([[0, 1, 2, 3, 4, 5]]) | |
>>> type_ids = jnp.zeros_like(tokens, dtype="i4") | |
>>> attention_mask = jnp.ones_like(tokens) # Dummy. This gets deleted inside the model. | |
>>> flax_pretraining_model = PreTrainingModel(pretrained_config) | |
>>> pretrained_model_params = freeze(pretrained_params['target']) | |
>>> flax_model_outputs = flax_pretraining_model.apply({"params": pretrained_model_params}, tokens, attention_mask, type_ids, None, None, None, None, deterministic=True) | |
>>> masked_lm_logits[:, :3, :3] | |
""" | |
model = FNetForMaskedLM.from_pretrained("google/fnet-base") | |
model.to(torch_device) | |
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]], device=torch_device) | |
with torch.no_grad(): | |
output = model(input_ids)[0] | |
vocab_size = 32000 | |
expected_shape = torch.Size((1, 6, vocab_size)) | |
self.assertEqual(output.shape, expected_shape) | |
expected_slice = torch.tensor( | |
[[[-1.7819, -7.7384, -7.5002], [-3.4746, -8.5943, -7.7762], [-3.2052, -9.0771, -8.3468]]], | |
device=torch_device, | |
) | |
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) | |
def test_inference_long_sentence(self): | |
model = FNetForMaskedLM.from_pretrained("google/fnet-base") | |
model.to(torch_device) | |
tokenizer = FNetTokenizerFast.from_pretrained("google/fnet-base") | |
inputs = tokenizer( | |
"the man worked as a [MASK].", | |
"this is his [MASK].", | |
return_tensors="pt", | |
padding="max_length", | |
max_length=512, | |
) | |
inputs = {k: v.to(torch_device) for k, v in inputs.items()} | |
logits = model(**inputs).logits | |
predictions_mask_1 = tokenizer.decode(logits[0, 6].topk(5).indices) | |
predictions_mask_2 = tokenizer.decode(logits[0, 12].topk(5).indices) | |
self.assertEqual(predictions_mask_1.split(" "), ["man", "child", "teacher", "woman", "model"]) | |
self.assertEqual(predictions_mask_2.split(" "), ["work", "wife", "job", "story", "name"]) | |
def test_inference_for_next_sentence_prediction(self): | |
model = FNetForNextSentencePrediction.from_pretrained("google/fnet-base") | |
model.to(torch_device) | |
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]], device=torch_device) | |
with torch.no_grad(): | |
output = model(input_ids)[0] | |
expected_shape = torch.Size((1, 2)) | |
self.assertEqual(output.shape, expected_shape) | |
expected_slice = torch.tensor([[-0.2234, -0.0226]], device=torch_device) | |
self.assertTrue(torch.allclose(output, expected_slice, atol=1e-4)) | |
def test_inference_model(self): | |
model = FNetModel.from_pretrained("google/fnet-base") | |
model.to(torch_device) | |
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]], device=torch_device) | |
with torch.no_grad(): | |
output = model(input_ids)[0] | |
expected_shape = torch.Size((1, 6, model.config.hidden_size)) | |
self.assertEqual(output.shape, expected_shape) | |
expected_slice = torch.tensor( | |
[[[4.1541, -0.1051, -0.1667], [-0.9144, 0.2939, -0.0086], [-0.8472, -0.7281, 0.0256]]], device=torch_device | |
) | |
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) | |