Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import is_tf_available | |
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_tf_available(): | |
import numpy as np | |
import tensorflow as tf | |
from transformers import ( | |
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
FlaubertConfig, | |
TFFlaubertForMultipleChoice, | |
TFFlaubertForQuestionAnsweringSimple, | |
TFFlaubertForSequenceClassification, | |
TFFlaubertForTokenClassification, | |
TFFlaubertModel, | |
TFFlaubertWithLMHeadModel, | |
) | |
class TFFlaubertModelTester: | |
def __init__( | |
self, | |
parent, | |
): | |
self.parent = parent | |
self.batch_size = 13 | |
self.seq_length = 7 | |
self.is_training = True | |
self.use_input_lengths = True | |
self.use_token_type_ids = True | |
self.use_labels = True | |
self.gelu_activation = True | |
self.sinusoidal_embeddings = False | |
self.causal = False | |
self.asm = False | |
self.n_langs = 2 | |
self.vocab_size = 99 | |
self.n_special = 0 | |
self.hidden_size = 32 | |
self.num_hidden_layers = 5 | |
self.num_attention_heads = 4 | |
self.hidden_dropout_prob = 0.1 | |
self.attention_probs_dropout_prob = 0.1 | |
self.max_position_embeddings = 512 | |
self.type_vocab_size = 16 | |
self.type_sequence_label_size = 2 | |
self.initializer_range = 0.02 | |
self.num_labels = 3 | |
self.num_choices = 4 | |
self.summary_type = "last" | |
self.use_proj = True | |
self.scope = None | |
self.bos_token_id = 0 | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = random_attention_mask([self.batch_size, self.seq_length], dtype=tf.float32) | |
input_lengths = None | |
if self.use_input_lengths: | |
input_lengths = ( | |
ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2 | |
) # small variation of seq_length | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs) | |
sequence_labels = None | |
token_labels = None | |
is_impossible_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = FlaubertConfig( | |
vocab_size=self.vocab_size, | |
n_special=self.n_special, | |
emb_dim=self.hidden_size, | |
n_layers=self.num_hidden_layers, | |
n_heads=self.num_attention_heads, | |
dropout=self.hidden_dropout_prob, | |
attention_dropout=self.attention_probs_dropout_prob, | |
gelu_activation=self.gelu_activation, | |
sinusoidal_embeddings=self.sinusoidal_embeddings, | |
asm=self.asm, | |
causal=self.causal, | |
n_langs=self.n_langs, | |
max_position_embeddings=self.max_position_embeddings, | |
initializer_range=self.initializer_range, | |
summary_type=self.summary_type, | |
use_proj=self.use_proj, | |
bos_token_id=self.bos_token_id, | |
) | |
return ( | |
config, | |
input_ids, | |
token_type_ids, | |
input_lengths, | |
sequence_labels, | |
token_labels, | |
is_impossible_labels, | |
choice_labels, | |
input_mask, | |
) | |
def create_and_check_flaubert_model( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_lengths, | |
sequence_labels, | |
token_labels, | |
is_impossible_labels, | |
choice_labels, | |
input_mask, | |
): | |
model = TFFlaubertModel(config=config) | |
inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} | |
result = model(inputs) | |
inputs = [input_ids, input_mask] | |
result = model(inputs) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
def create_and_check_flaubert_lm_head( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_lengths, | |
sequence_labels, | |
token_labels, | |
is_impossible_labels, | |
choice_labels, | |
input_mask, | |
): | |
model = TFFlaubertWithLMHeadModel(config) | |
inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} | |
result = model(inputs) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def create_and_check_flaubert_qa( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_lengths, | |
sequence_labels, | |
token_labels, | |
is_impossible_labels, | |
choice_labels, | |
input_mask, | |
): | |
model = TFFlaubertForQuestionAnsweringSimple(config) | |
inputs = {"input_ids": input_ids, "lengths": input_lengths} | |
result = model(inputs) | |
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
def create_and_check_flaubert_sequence_classif( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_lengths, | |
sequence_labels, | |
token_labels, | |
is_impossible_labels, | |
choice_labels, | |
input_mask, | |
): | |
model = TFFlaubertForSequenceClassification(config) | |
inputs = {"input_ids": input_ids, "lengths": input_lengths} | |
result = model(inputs) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) | |
def create_and_check_flaubert_for_token_classification( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_lengths, | |
sequence_labels, | |
token_labels, | |
is_impossible_labels, | |
choice_labels, | |
input_mask, | |
): | |
config.num_labels = self.num_labels | |
model = TFFlaubertForTokenClassification(config=config) | |
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} | |
result = model(inputs) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
def create_and_check_flaubert_for_multiple_choice( | |
self, | |
config, | |
input_ids, | |
token_type_ids, | |
input_lengths, | |
sequence_labels, | |
token_labels, | |
is_impossible_labels, | |
choice_labels, | |
input_mask, | |
): | |
config.num_choices = self.num_choices | |
model = TFFlaubertForMultipleChoice(config=config) | |
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) | |
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) | |
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) | |
inputs = { | |
"input_ids": multiple_choice_inputs_ids, | |
"attention_mask": multiple_choice_input_mask, | |
"token_type_ids": multiple_choice_token_type_ids, | |
} | |
result = model(inputs) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
token_type_ids, | |
input_lengths, | |
sequence_labels, | |
token_labels, | |
is_impossible_labels, | |
choice_labels, | |
input_mask, | |
) = config_and_inputs | |
inputs_dict = { | |
"input_ids": input_ids, | |
"token_type_ids": token_type_ids, | |
"langs": token_type_ids, | |
"lengths": input_lengths, | |
} | |
return config, inputs_dict | |
class TFFlaubertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
( | |
TFFlaubertModel, | |
TFFlaubertWithLMHeadModel, | |
TFFlaubertForSequenceClassification, | |
TFFlaubertForQuestionAnsweringSimple, | |
TFFlaubertForTokenClassification, | |
TFFlaubertForMultipleChoice, | |
) | |
if is_tf_available() | |
else () | |
) | |
all_generative_model_classes = ( | |
(TFFlaubertWithLMHeadModel,) if is_tf_available() else () | |
) # TODO (PVP): Check other models whether language generation is also applicable | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": TFFlaubertModel, | |
"fill-mask": TFFlaubertWithLMHeadModel, | |
"question-answering": TFFlaubertForQuestionAnsweringSimple, | |
"text-classification": TFFlaubertForSequenceClassification, | |
"token-classification": TFFlaubertForTokenClassification, | |
"zero-shot": TFFlaubertForSequenceClassification, | |
} | |
if is_tf_available() | |
else {} | |
) | |
test_head_masking = False | |
test_onnx = False | |
# TODO: Fix the failed tests | |
def is_pipeline_test_to_skip( | |
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name | |
): | |
if pipeline_test_casse_name == "FillMaskPipelineTests": | |
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. | |
# `FlaubertConfig` was never used in pipeline tests: cannot create a simple tokenizer | |
return True | |
elif ( | |
pipeline_test_casse_name == "QAPipelineTests" | |
and tokenizer_name is not None | |
and not tokenizer_name.endswith("Fast") | |
): | |
# `QAPipelineTests` fails for a few models when the slower tokenizer are used. | |
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) | |
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer | |
return True | |
return False | |
def setUp(self): | |
self.model_tester = TFFlaubertModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=FlaubertConfig, emb_dim=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_flaubert_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_flaubert_model(*config_and_inputs) | |
def test_flaubert_lm_head(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_flaubert_lm_head(*config_and_inputs) | |
def test_flaubert_qa(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_flaubert_qa(*config_and_inputs) | |
def test_flaubert_sequence_classif(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_flaubert_sequence_classif(*config_and_inputs) | |
def test_for_token_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_flaubert_for_token_classification(*config_and_inputs) | |
def test_for_multiple_choice(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_flaubert_for_multiple_choice(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = TFFlaubertModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class TFFlaubertModelIntegrationTest(unittest.TestCase): | |
def test_output_embeds_base_model(self): | |
model = TFFlaubertModel.from_pretrained("jplu/tf-flaubert-small-cased") | |
input_ids = tf.convert_to_tensor( | |
[[0, 158, 735, 2592, 1424, 6727, 82, 1]], | |
dtype=tf.int32, | |
) # "J'aime flaubert !" | |
output = model(input_ids)[0] | |
expected_shape = tf.TensorShape((1, 8, 512)) | |
self.assertEqual(output.shape, expected_shape) | |
# compare the actual values for a slice. | |
expected_slice = tf.convert_to_tensor( | |
[ | |
[ | |
[-1.8768773, -1.566555, 0.27072418], | |
[-1.6920038, -0.5873505, 1.9329599], | |
[-2.9563985, -1.6993835, 1.7972052], | |
] | |
], | |
dtype=tf.float32, | |
) | |
self.assertTrue(np.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4)) | |