Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import is_torch_available, is_vision_available | |
from transformers.testing_utils import require_torch, require_vision, slow, torch_device | |
if is_torch_available(): | |
import torch | |
from transformers import AutoModelForImageClassification | |
if is_vision_available(): | |
from transformers import AutoFeatureExtractor | |
class DiTIntegrationTest(unittest.TestCase): | |
def test_for_image_classification(self): | |
feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip") | |
model = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip") | |
model.to(torch_device) | |
from datasets import load_dataset | |
dataset = load_dataset("nielsr/rvlcdip-demo") | |
image = dataset["train"][0]["image"].convert("RGB") | |
inputs = feature_extractor(image, return_tensors="pt").to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
expected_shape = torch.Size((1, 16)) | |
self.assertEqual(logits.shape, expected_shape) | |
expected_slice = torch.tensor( | |
[-0.4158, -0.4092, -0.4347], | |
device=torch_device, | |
dtype=torch.float, | |
) | |
self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4)) | |