Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Fine-tuning the library models for sequence classification.""" | |
| import logging | |
| import os | |
| from dataclasses import dataclass, field | |
| from typing import Dict, Optional | |
| import datasets | |
| import numpy as np | |
| import tensorflow as tf | |
| from transformers import ( | |
| AutoConfig, | |
| AutoTokenizer, | |
| EvalPrediction, | |
| HfArgumentParser, | |
| PreTrainedTokenizer, | |
| TFAutoModelForSequenceClassification, | |
| TFTrainer, | |
| TFTrainingArguments, | |
| ) | |
| from transformers.utils import logging as hf_logging | |
| hf_logging.set_verbosity_info() | |
| hf_logging.enable_default_handler() | |
| hf_logging.enable_explicit_format() | |
| def get_tfds( | |
| train_file: str, | |
| eval_file: str, | |
| test_file: str, | |
| tokenizer: PreTrainedTokenizer, | |
| label_column_id: int, | |
| max_seq_length: Optional[int] = None, | |
| ): | |
| files = {} | |
| if train_file is not None: | |
| files[datasets.Split.TRAIN] = [train_file] | |
| if eval_file is not None: | |
| files[datasets.Split.VALIDATION] = [eval_file] | |
| if test_file is not None: | |
| files[datasets.Split.TEST] = [test_file] | |
| ds = datasets.load_dataset("csv", data_files=files) | |
| features_name = list(ds[list(files.keys())[0]].features.keys()) | |
| label_name = features_name.pop(label_column_id) | |
| label_list = list(set(ds[list(files.keys())[0]][label_name])) | |
| label2id = {label: i for i, label in enumerate(label_list)} | |
| input_names = tokenizer.model_input_names | |
| transformed_ds = {} | |
| if len(features_name) == 1: | |
| for k in files.keys(): | |
| transformed_ds[k] = ds[k].map( | |
| lambda example: tokenizer.batch_encode_plus( | |
| example[features_name[0]], truncation=True, max_length=max_seq_length, padding="max_length" | |
| ), | |
| batched=True, | |
| ) | |
| elif len(features_name) == 2: | |
| for k in files.keys(): | |
| transformed_ds[k] = ds[k].map( | |
| lambda example: tokenizer.batch_encode_plus( | |
| (example[features_name[0]], example[features_name[1]]), | |
| truncation=True, | |
| max_length=max_seq_length, | |
| padding="max_length", | |
| ), | |
| batched=True, | |
| ) | |
| def gen_train(): | |
| for ex in transformed_ds[datasets.Split.TRAIN]: | |
| d = {k: v for k, v in ex.items() if k in input_names} | |
| label = label2id[ex[label_name]] | |
| yield (d, label) | |
| def gen_val(): | |
| for ex in transformed_ds[datasets.Split.VALIDATION]: | |
| d = {k: v for k, v in ex.items() if k in input_names} | |
| label = label2id[ex[label_name]] | |
| yield (d, label) | |
| def gen_test(): | |
| for ex in transformed_ds[datasets.Split.TEST]: | |
| d = {k: v for k, v in ex.items() if k in input_names} | |
| label = label2id[ex[label_name]] | |
| yield (d, label) | |
| train_ds = ( | |
| tf.data.Dataset.from_generator( | |
| gen_train, | |
| ({k: tf.int32 for k in input_names}, tf.int64), | |
| ({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])), | |
| ) | |
| if datasets.Split.TRAIN in transformed_ds | |
| else None | |
| ) | |
| if train_ds is not None: | |
| train_ds = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN]))) | |
| val_ds = ( | |
| tf.data.Dataset.from_generator( | |
| gen_val, | |
| ({k: tf.int32 for k in input_names}, tf.int64), | |
| ({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])), | |
| ) | |
| if datasets.Split.VALIDATION in transformed_ds | |
| else None | |
| ) | |
| if val_ds is not None: | |
| val_ds = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION]))) | |
| test_ds = ( | |
| tf.data.Dataset.from_generator( | |
| gen_test, | |
| ({k: tf.int32 for k in input_names}, tf.int64), | |
| ({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])), | |
| ) | |
| if datasets.Split.TEST in transformed_ds | |
| else None | |
| ) | |
| if test_ds is not None: | |
| test_ds = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST]))) | |
| return train_ds, val_ds, test_ds, label2id | |
| logger = logging.getLogger(__name__) | |
| class DataTrainingArguments: | |
| """ | |
| Arguments pertaining to what data we are going to input our model for training and eval. | |
| Using `HfArgumentParser` we can turn this class | |
| into argparse arguments to be able to specify them on | |
| the command line. | |
| """ | |
| label_column_id: int = field(metadata={"help": "Which column contains the label"}) | |
| train_file: str = field(default=None, metadata={"help": "The path of the training file"}) | |
| dev_file: Optional[str] = field(default=None, metadata={"help": "The path of the development file"}) | |
| test_file: Optional[str] = field(default=None, metadata={"help": "The path of the test file"}) | |
| max_seq_length: int = field( | |
| default=128, | |
| metadata={ | |
| "help": ( | |
| "The maximum total input sequence length after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded." | |
| ) | |
| }, | |
| ) | |
| overwrite_cache: bool = field( | |
| default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
| ) | |
| class ModelArguments: | |
| """ | |
| Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
| """ | |
| model_name_or_path: str = field( | |
| metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
| ) | |
| config_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
| ) | |
| tokenizer_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
| ) | |
| use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."}) | |
| # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, | |
| # or just modify its tokenizer_config.json. | |
| cache_dir: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, | |
| ) | |
| def main(): | |
| # See all possible arguments in src/transformers/training_args.py | |
| # or by passing the --help flag to this script. | |
| # We now keep distinct sets of args, for a cleaner separation of concerns. | |
| parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) | |
| model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
| if ( | |
| os.path.exists(training_args.output_dir) | |
| and os.listdir(training_args.output_dir) | |
| and training_args.do_train | |
| and not training_args.overwrite_output_dir | |
| ): | |
| raise ValueError( | |
| f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" | |
| " --overwrite_output_dir to overcome." | |
| ) | |
| # Setup logging | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, | |
| ) | |
| logger.info( | |
| f"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1)}, " | |
| f"16-bits training: {training_args.fp16}" | |
| ) | |
| logger.info(f"Training/evaluation parameters {training_args}") | |
| # Load pretrained model and tokenizer | |
| # | |
| # Distributed training: | |
| # The .from_pretrained methods guarantee that only one local process can concurrently | |
| # download model & vocab. | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| ) | |
| train_dataset, eval_dataset, test_ds, label2id = get_tfds( | |
| train_file=data_args.train_file, | |
| eval_file=data_args.dev_file, | |
| test_file=data_args.test_file, | |
| tokenizer=tokenizer, | |
| label_column_id=data_args.label_column_id, | |
| max_seq_length=data_args.max_seq_length, | |
| ) | |
| config = AutoConfig.from_pretrained( | |
| model_args.config_name if model_args.config_name else model_args.model_name_or_path, | |
| num_labels=len(label2id), | |
| label2id=label2id, | |
| id2label={id: label for label, id in label2id.items()}, | |
| finetuning_task="text-classification", | |
| cache_dir=model_args.cache_dir, | |
| ) | |
| with training_args.strategy.scope(): | |
| model = TFAutoModelForSequenceClassification.from_pretrained( | |
| model_args.model_name_or_path, | |
| from_pt=bool(".bin" in model_args.model_name_or_path), | |
| config=config, | |
| cache_dir=model_args.cache_dir, | |
| ) | |
| def compute_metrics(p: EvalPrediction) -> Dict: | |
| preds = np.argmax(p.predictions, axis=1) | |
| return {"acc": (preds == p.label_ids).mean()} | |
| # Initialize our Trainer | |
| trainer = TFTrainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=train_dataset, | |
| eval_dataset=eval_dataset, | |
| compute_metrics=compute_metrics, | |
| ) | |
| # Training | |
| if training_args.do_train: | |
| trainer.train() | |
| trainer.save_model() | |
| tokenizer.save_pretrained(training_args.output_dir) | |
| # Evaluation | |
| results = {} | |
| if training_args.do_eval: | |
| logger.info("*** Evaluate ***") | |
| result = trainer.evaluate() | |
| output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt") | |
| with open(output_eval_file, "w") as writer: | |
| logger.info("***** Eval results *****") | |
| for key, value in result.items(): | |
| logger.info(f" {key} = {value}") | |
| writer.write(f"{key} = {value}\n") | |
| results.update(result) | |
| return results | |
| if __name__ == "__main__": | |
| main() | |