Spaces:
Runtime error
Runtime error
<!--Copyright 2022 The HuggingFace Team. All rights reserved. | |
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with | |
the License. You may obtain a copy of the License at | |
http://www.apache.org/licenses/LICENSE-2.0 | |
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on | |
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the | |
specific language governing permissions and limitations under the License. | |
--> | |
# Swin Transformer V2 | |
## Overview | |
The Swin Transformer V2 model was proposed in [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo. | |
The abstract from the paper is the following: | |
*Large-scale NLP models have been shown to significantly improve the performance on language tasks with no signs of saturation. They also demonstrate amazing few-shot capabilities like that of human beings. This paper aims to explore large-scale models in computer vision. We tackle three major issues in training and application of large vision models, including training instability, resolution gaps between pre-training and fine-tuning, and hunger on labelled data. Three main techniques are proposed: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) A log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) A self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. Through these techniques, this paper successfully trained a 3 billion-parameter Swin Transformer V2 model, which is the largest dense vision model to date, and makes it capable of training with images of up to 1,536×1,536 resolution. It set new performance records on 4 representative vision tasks, including ImageNet-V2 image classification, COCO object detection, ADE20K semantic segmentation, and Kinetics-400 video action classification. Also note our training is much more efficient than that in Google's billion-level visual models, which consumes 40 times less labelled data and 40 times less training time.* | |
Tips: | |
- One can use the [`AutoImageProcessor`] API to prepare images for the model. | |
This model was contributed by [nandwalritik](https://huggingface.co/nandwalritik). | |
The original code can be found [here](https://github.com/microsoft/Swin-Transformer). | |
## Resources | |
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Swin Transformer v2. | |
<PipelineTag pipeline="image-classification"/> | |
- [`Swinv2ForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb). | |
- See also: [Image classification task guide](../tasks/image_classification) | |
Besides that: | |
- [`Swinv2ForMaskedImageModeling`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining). | |
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. | |
## Swinv2Config | |
[[autodoc]] Swinv2Config | |
## Swinv2Model | |
[[autodoc]] Swinv2Model | |
- forward | |
## Swinv2ForMaskedImageModeling | |
[[autodoc]] Swinv2ForMaskedImageModeling | |
- forward | |
## Swinv2ForImageClassification | |
[[autodoc]] transformers.Swinv2ForImageClassification | |
- forward | |