Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2022 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import json | |
| import os | |
| import re | |
| import unittest | |
| from transformers import CodeGenTokenizer, CodeGenTokenizerFast | |
| from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES | |
| from transformers.testing_utils import require_tokenizers, slow | |
| from ...test_tokenization_common import TokenizerTesterMixin | |
| class CodeGenTokenizationTest(TokenizerTesterMixin, unittest.TestCase): | |
| tokenizer_class = CodeGenTokenizer | |
| rust_tokenizer_class = CodeGenTokenizerFast | |
| test_rust_tokenizer = True | |
| from_pretrained_kwargs = {"add_prefix_space": True} | |
| test_seq2seq = False | |
| def setUp(self): | |
| super().setUp() | |
| # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt | |
| vocab = [ | |
| "l", | |
| "o", | |
| "w", | |
| "e", | |
| "r", | |
| "s", | |
| "t", | |
| "i", | |
| "d", | |
| "n", | |
| "\u0120", | |
| "\u0120l", | |
| "\u0120n", | |
| "\u0120lo", | |
| "\u0120low", | |
| "er", | |
| "\u0120lowest", | |
| "\u0120newer", | |
| "\u0120wider", | |
| "<unk>", | |
| "<|endoftext|>", | |
| ] | |
| vocab_tokens = dict(zip(vocab, range(len(vocab)))) | |
| merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] | |
| self.special_tokens_map = {"unk_token": "<unk>"} | |
| self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) | |
| self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) | |
| with open(self.vocab_file, "w", encoding="utf-8") as fp: | |
| fp.write(json.dumps(vocab_tokens) + "\n") | |
| with open(self.merges_file, "w", encoding="utf-8") as fp: | |
| fp.write("\n".join(merges)) | |
| def get_tokenizer(self, **kwargs): | |
| kwargs.update(self.special_tokens_map) | |
| return CodeGenTokenizer.from_pretrained(self.tmpdirname, **kwargs) | |
| def get_rust_tokenizer(self, **kwargs): | |
| kwargs.update(self.special_tokens_map) | |
| return CodeGenTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) | |
| def get_input_output_texts(self, tokenizer): | |
| input_text = "lower newer" | |
| output_text = "lower newer" | |
| return input_text, output_text | |
| def test_full_tokenizer(self): | |
| tokenizer = CodeGenTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map) | |
| text = "lower newer" | |
| bpe_tokens = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] | |
| tokens = tokenizer.tokenize(text, add_prefix_space=True) | |
| self.assertListEqual(tokens, bpe_tokens) | |
| input_tokens = tokens + [tokenizer.unk_token] | |
| input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19] | |
| self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) | |
| def test_rust_and_python_full_tokenizers(self): | |
| if not self.test_rust_tokenizer: | |
| return | |
| tokenizer = self.get_tokenizer() | |
| rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True) | |
| sequence = "lower newer" | |
| # Testing tokenization | |
| tokens = tokenizer.tokenize(sequence, add_prefix_space=True) | |
| rust_tokens = rust_tokenizer.tokenize(sequence) | |
| self.assertListEqual(tokens, rust_tokens) | |
| # Testing conversion to ids without special tokens | |
| ids = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True) | |
| rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) | |
| self.assertListEqual(ids, rust_ids) | |
| # Testing conversion to ids with special tokens | |
| rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True) | |
| ids = tokenizer.encode(sequence, add_prefix_space=True) | |
| rust_ids = rust_tokenizer.encode(sequence) | |
| self.assertListEqual(ids, rust_ids) | |
| # Testing the unknown token | |
| input_tokens = tokens + [rust_tokenizer.unk_token] | |
| input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19] | |
| self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) | |
| def test_pretokenized_inputs(self, *args, **kwargs): | |
| # It's very difficult to mix/test pretokenization with byte-level | |
| # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) | |
| pass | |
| def test_padding(self, max_length=15): | |
| for tokenizer, pretrained_name, kwargs in self.tokenizers_list: | |
| with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): | |
| tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) | |
| # Simple input | |
| s = "This is a simple input" | |
| s2 = ["This is a simple input 1", "This is a simple input 2"] | |
| p = ("This is a simple input", "This is a pair") | |
| p2 = [ | |
| ("This is a simple input 1", "This is a simple input 2"), | |
| ("This is a simple pair 1", "This is a simple pair 2"), | |
| ] | |
| # Simple input tests | |
| self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length") | |
| # Simple input | |
| self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length") | |
| # Simple input | |
| self.assertRaises( | |
| ValueError, | |
| tokenizer_r.batch_encode_plus, | |
| s2, | |
| max_length=max_length, | |
| padding="max_length", | |
| ) | |
| # Pair input | |
| self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length") | |
| # Pair input | |
| self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length") | |
| # Pair input | |
| self.assertRaises( | |
| ValueError, | |
| tokenizer_r.batch_encode_plus, | |
| p2, | |
| max_length=max_length, | |
| padding="max_length", | |
| ) | |
| def test_padding_if_pad_token_set_slow(self): | |
| tokenizer = CodeGenTokenizer.from_pretrained(self.tmpdirname, pad_token="<pad>") | |
| # Simple input | |
| s = "This is a simple input" | |
| s2 = ["This is a simple input looooooooong", "This is a simple input"] | |
| p = ("This is a simple input", "This is a pair") | |
| p2 = [ | |
| ("This is a simple input loooooong", "This is a simple input"), | |
| ("This is a simple pair loooooong", "This is a simple pair"), | |
| ] | |
| pad_token_id = tokenizer.pad_token_id | |
| out_s = tokenizer(s, padding="max_length", max_length=30, return_tensors="np") | |
| out_s2 = tokenizer(s2, padding=True, truncate=True, return_tensors="np") | |
| out_p = tokenizer(*p, padding="max_length", max_length=60, return_tensors="np") | |
| out_p2 = tokenizer(p2, padding=True, truncate=True, return_tensors="np") | |
| # s | |
| # test single string max_length padding | |
| self.assertEqual(out_s["input_ids"].shape[-1], 30) | |
| self.assertTrue(pad_token_id in out_s["input_ids"]) | |
| self.assertTrue(0 in out_s["attention_mask"]) | |
| # s2 | |
| # test automatic padding | |
| self.assertEqual(out_s2["input_ids"].shape[-1], 33) | |
| # long slice doesn't have padding | |
| self.assertFalse(pad_token_id in out_s2["input_ids"][0]) | |
| self.assertFalse(0 in out_s2["attention_mask"][0]) | |
| # short slice does have padding | |
| self.assertTrue(pad_token_id in out_s2["input_ids"][1]) | |
| self.assertTrue(0 in out_s2["attention_mask"][1]) | |
| # p | |
| # test single pair max_length padding | |
| self.assertEqual(out_p["input_ids"].shape[-1], 60) | |
| self.assertTrue(pad_token_id in out_p["input_ids"]) | |
| self.assertTrue(0 in out_p["attention_mask"]) | |
| # p2 | |
| # test automatic padding pair | |
| self.assertEqual(out_p2["input_ids"].shape[-1], 52) | |
| # long slice pair doesn't have padding | |
| self.assertFalse(pad_token_id in out_p2["input_ids"][0]) | |
| self.assertFalse(0 in out_p2["attention_mask"][0]) | |
| # short slice pair does have padding | |
| self.assertTrue(pad_token_id in out_p2["input_ids"][1]) | |
| self.assertTrue(0 in out_p2["attention_mask"][1]) | |
| def test_add_bos_token_slow(self): | |
| bos_token = "$$$" | |
| tokenizer = CodeGenTokenizer.from_pretrained(self.tmpdirname, bos_token=bos_token, add_bos_token=True) | |
| s = "This is a simple input" | |
| s2 = ["This is a simple input 1", "This is a simple input 2"] | |
| bos_token_id = tokenizer.bos_token_id | |
| out_s = tokenizer(s) | |
| out_s2 = tokenizer(s2) | |
| self.assertEqual(out_s.input_ids[0], bos_token_id) | |
| self.assertTrue(all(o[0] == bos_token_id for o in out_s2.input_ids)) | |
| decode_s = tokenizer.decode(out_s.input_ids) | |
| decode_s2 = tokenizer.batch_decode(out_s2.input_ids) | |
| self.assertEqual(decode_s.split()[0], bos_token) | |
| self.assertTrue(all(d.split()[0] == bos_token for d in decode_s2)) | |
| def test_truncation(self): | |
| tokenizer = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono") | |
| text = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" | |
| expected_trucated_text = "\nif len_a > len_b: result = a\nelse: result = b" | |
| input_ids = tokenizer.encode(text) | |
| truncation_pattern = ["^#", re.escape("<|endoftext|>"), "^'''", '^"""', "\n\n\n"] | |
| decoded_text = tokenizer.decode(input_ids, truncate_before_pattern=truncation_pattern) | |
| self.assertEqual(decoded_text, expected_trucated_text) | |
| # tokenizer has no padding token | |
| def test_padding_different_model_input_name(self): | |
| pass | |