File size: 17,970 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from transformers.models.whisper import WhisperTokenizer, WhisperTokenizerFast
from transformers.models.whisper.tokenization_whisper import _find_longest_common_sequence
from transformers.testing_utils import slow

from ...test_tokenization_common import TokenizerTesterMixin


ES_CODE = 50262
EN_CODE = 50259
END_OF_TRANSCRIPT = 50257
START_OF_TRANSCRIPT = 50258
TRANSLATE = 50358
TRANSCRIBE = 50359
NOTIMESTAMPS = 50363


class WhisperTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = WhisperTokenizer
    rust_tokenizer_class = WhisperTokenizerFast
    test_rust_tokenizer = True
    test_sentencepiece = False
    test_seq2seq = False

    def setUp(self):
        super().setUp()
        tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny")
        tokenizer.pad_token_id = 50256
        tokenizer.pad_token = "<|endoftext|>"
        tokenizer.save_pretrained(self.tmpdirname)

    def test_convert_token_and_id(self):
        """Test ``_convert_token_to_id`` and ``_convert_id_to_token``."""
        token = "Where"
        token_id = 14436

        self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id)
        self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token)

    def test_get_vocab(self):
        vocab_keys = list(self.get_tokenizer().get_vocab().keys())

        self.assertEqual(vocab_keys[0], "!")
        self.assertEqual(vocab_keys[1], '"')
        self.assertEqual(vocab_keys[-1], "<|notimestamps|>")
        self.assertEqual(len(vocab_keys), 50364)

    def test_vocab_size(self):
        self.assertEqual(self.get_tokenizer().vocab_size, 50258)

    def test_full_tokenizer(self):
        tokenizer = WhisperTokenizer.from_pretrained(self.tmpdirname)

        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["This", "Ġis", "Ġa", "Ġ", "test"])

        self.assertListEqual(
            tokenizer.convert_tokens_to_ids(tokens),
            [5723, 307, 257, 220, 31636],
        )

        tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
        self.assertListEqual(
            tokens,
            # fmt: off
            ['I', 'Ġwas', 'Ġborn', 'Ġin', 'Ġ9', '2000', ',', 'Ġand', 'Ġ', 'this', 'Ġis', 'Ġfals', 'é', '.'],
            # fmt: on
        )
        ids = tokenizer.convert_tokens_to_ids(tokens)
        self.assertListEqual(ids, [40, 390, 4232, 294, 1722, 25743, 11, 293, 220, 11176, 307, 16720, 526, 13])

        back_tokens = tokenizer.convert_ids_to_tokens(ids)
        self.assertListEqual(
            back_tokens,
            # fmt: off
            ['I', 'Ġwas', 'Ġborn', 'Ġin', 'Ġ9', '2000', ',', 'Ġand', 'Ġ', 'this', 'Ġis', 'Ġfals', 'é', '.'],
            # fmt: on
        )

    def test_tokenizer_slow_store_full_signature(self):
        pass

    def test_tokenizer_fast_store_full_signature(self):
        pass

    def test_special_tokens_initialization(self):
        # Whisper relies on specific additional special tokens, so we skip this
        # general test. In particular, this test loads fast tokenizer from slow
        # tokenizer, and the conversion uses prefix_tokens, where we reference
        # additional special tokens by specific indices, hence overriding the
        # list with less tokens leads to out of index error
        pass

    @slow
    def test_tokenizer_integration(self):
        # fmt: off
        expected_encoding = {'input_ids': [[50257, 50362, 41762, 364, 357, 36234, 1900, 355, 12972, 13165, 354, 12, 35636, 364, 290, 12972, 13165, 354, 12, 5310, 13363, 12, 4835, 8, 3769, 2276, 12, 29983, 45619, 357, 13246, 51, 11, 402, 11571, 12, 17, 11, 5564, 13246, 38586, 11, 16276, 44, 11, 4307, 346, 33, 861, 11, 16276, 7934, 23029, 329, 12068, 15417, 28491, 357, 32572, 52, 8, 290, 12068, 15417, 16588, 357, 32572, 38, 8, 351, 625, 3933, 10, 2181, 13363, 4981, 287, 1802, 10, 8950, 290, 2769, 48817, 1799, 1022, 449, 897, 11, 9485, 15884, 354, 290, 309, 22854, 37535, 13, 50256], [50257, 50362, 13246, 51, 318, 3562, 284, 662, 12, 27432, 2769, 8406, 4154, 282, 24612, 422, 9642, 9608, 276, 2420, 416, 26913, 21143, 319, 1111, 1364, 290, 826, 4732, 287, 477, 11685, 13, 50256], [50257, 50362, 464, 2068, 7586, 21831, 18045, 625, 262, 16931, 3290, 13, 50256]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}  # noqa: E501
        # fmt: on

        self.tokenizer_integration_test_util(
            expected_encoding=expected_encoding, model_name="openai/whisper-tiny.en", padding=False
        )

    def test_output_offsets(self):
        tokenizer = self.get_tokenizer()
        previous_sequence = [51492, 406, 3163, 1953, 466, 13, 51612, 51612]
        self.assertEqual(
            tokenizer.decode(previous_sequence, output_offsets=True),
            {
                "text": " not worth thinking about.",
                "offsets": [{"text": " not worth thinking about.", "timestamp": (22.56, 24.96)}],
            },
        )

        # Merge when the previous sequence is a suffix of the next sequence
        # fmt: off
        next_sequences_1 = [50364, 295, 6177, 3391, 11, 19817, 3337, 507, 307, 406, 3163, 1953, 466, 13, 50614, 50614, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50834, 50257]
        # fmt: on
        self.assertEqual(
            tokenizer.decode(next_sequences_1, output_offsets=True),
            {
                "text": (
                    " of spectators, retrievality is not worth thinking about. His instant panic was followed by a"
                    " small, sharp blow high on his chest.<|endoftext|>"
                ),
                "offsets": [
                    {"text": " of spectators, retrievality is not worth thinking about.", "timestamp": (0.0, 5.0)},
                    {
                        "text": " His instant panic was followed by a small, sharp blow high on his chest.",
                        "timestamp": (5.0, 9.4),
                    },
                ],
            },
        )

    def test_find_longest_common_subsequence(self):
        previous_sequence = [1, 2, 3]
        next_sequence = [2, 3, 4, 5]
        merge = _find_longest_common_sequence([previous_sequence, next_sequence])
        self.assertEqual(merge, [1, 2, 3, 4, 5])

        # Now previous is larger than next.
        # We merge what we can and remove the extra right side of the left sequence
        previous_sequence = [1, 2, 3, 4, 5, 6, 7]
        next_sequence = [2, 3, 4, 5]
        merge = _find_longest_common_sequence([previous_sequence, next_sequence])
        self.assertEqual(merge, [1, 2, 3, 4, 5])

        # Nothing in common
        previous_sequence = [1, 2, 3]
        next_sequence = [4, 5, 6]
        merge = _find_longest_common_sequence([previous_sequence, next_sequence])
        self.assertEqual(merge, [1, 2, 3, 4, 5, 6])

        # Some errors in the overlap.
        # We take from previous on the left, from the next on the right of the overlap
        previous_sequence = [1, 2, 3, 4, 99]
        next_sequence = [2, 98, 4, 5, 6]
        merge = _find_longest_common_sequence([previous_sequence, next_sequence])
        self.assertEqual(merge, [1, 2, 3, 4, 5, 6])

        # We take from previous on the left, from the next on the right of the overlap
        previous_sequence = [1, 2, 99, 4, 5]
        next_sequence = [2, 3, 4, 98, 6]
        merge = _find_longest_common_sequence([previous_sequence, next_sequence])
        self.assertEqual(merge, [1, 2, 99, 4, 98, 6])

        # This works on 3 sequences
        seq1 = [1, 2, 3]
        seq2 = [2, 3, 4]
        seq3 = [3, 4, 5]
        merge = _find_longest_common_sequence([seq1, seq2, seq3])
        self.assertEqual(merge, [1, 2, 3, 4, 5])

        # This works on 3 sequences with errors
        seq1 = [1, 2, 3, 98, 5]
        seq2 = [2, 99, 4, 5, 6, 7]
        seq3 = [4, 97, 6, 7, 8]
        merge = _find_longest_common_sequence([seq1, seq2, seq3])
        self.assertEqual(merge, [1, 2, 3, 4, 5, 6, 7, 8])


class SpeechToTextTokenizerMultilinguialTest(unittest.TestCase):
    checkpoint_name = "openai/whisper-small.en"

    @classmethod
    def setUpClass(cls):
        cls.tokenizer: WhisperTokenizer = WhisperTokenizer.from_pretrained(cls.checkpoint_name)
        return cls

    def test_tokenizer_equivalence(self):
        text = "다람쥐 헌 쳇바퀴에 타고파"
        multilingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny", language="korean")
        monolingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny.en")

        monolingual_tokens = monolingual_tokenizer.encode(text, add_special_tokens=False)
        multilingual_tokens = multilingual_tokenizer.encode(text, add_special_tokens=False)

        assert monolingual_tokenizer.decode(monolingual_tokens) == text
        assert multilingual_tokenizer.decode(multilingual_tokens) == text
        assert len(monolingual_tokens) > len(multilingual_tokens)

        # fmt: off
        EXPECTED_ENG = [
            46695, 97, 167, 252, 234, 168, 98, 238, 220, 169,
            245, 234, 23821, 111, 229, 167, 108, 242, 169, 222,
            112, 168, 245, 238, 220, 169, 225, 222, 166, 111,
            254, 169, 234, 234
        ]
        EXPECTED_MULTI = [
            9835, 22855, 168, 98, 238, 13431, 234, 43517, 229, 47053,
            169, 222, 19086, 19840, 1313, 17974
        ]
        # fmt: on

        self.assertListEqual(monolingual_tokens, EXPECTED_ENG)
        self.assertListEqual(multilingual_tokens, EXPECTED_MULTI)

    def test_tokenizer_special(self):
        multilingual_tokenizer = WhisperTokenizer.from_pretrained(
            "openai/whisper-tiny", language="english", task="transcribe"
        )
        text = "Hey! How are you feeling? J'ai l'impression que 郷さん est prêt"

        multilingual_tokens = multilingual_tokenizer.encode(text)

        # fmt: off
        # format: <|startoftranscript|> <|lang-id|> <|task|> <|notimestamps|> ... transcription ids ... <|endoftext|>
        EXPECTED_MULTI = [
            START_OF_TRANSCRIPT, EN_CODE, TRANSCRIBE, NOTIMESTAMPS, 7057, 0, 1012, 366, 291,
            2633, 30, 508, 6, 1301, 287, 6, 36107, 631, 220, 11178,
            115, 15567, 871, 44393, END_OF_TRANSCRIPT
        ]
        EXPECTED_SPECIAL_TEXT = (
            "<|startoftranscript|><|en|><|transcribe|><|notimestamps|>Hey! How are you feeling? "
            "J'ai l'impression que 郷さん est prêt<|endoftext|>"
        )
        # fmt: on

        self.assertListEqual(multilingual_tokens, EXPECTED_MULTI)

        special_transcript = multilingual_tokenizer.decode(multilingual_tokens, skip_special_tokens=False)
        self.assertEqual(special_transcript, EXPECTED_SPECIAL_TEXT)

        transcript = multilingual_tokenizer.decode(multilingual_tokens, skip_special_tokens=True)
        self.assertEqual(transcript, text)

    def test_vocab_size(self):
        self.assertEqual(self.tokenizer.vocab_size, 50257)

    # Copied from transformers.tests.speech_to_test.test_tokenization_speech_to_text.py
    def test_tokenizer_decode_ignores_language_codes(self):
        self.assertIn(ES_CODE, self.tokenizer.all_special_ids)
        generated_ids = [ES_CODE, 4, 1601, 47, 7647, 2]
        result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
        expected_spanish = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
        self.assertEqual(result, expected_spanish)
        self.assertNotIn(self.tokenizer.eos_token, result)

    def test_batch_encoding(self):
        multilingual_tokenizer = WhisperTokenizer.from_pretrained(
            "openai/whisper-tiny", language="spanish", task="translate"
        )
        batch = ["El gato ", "El gato se sentó"]
        batch_output = multilingual_tokenizer.batch_encode_plus(batch, padding=True).input_ids

        # fmt: off
        EXPECTED_MULTI = [
            [START_OF_TRANSCRIPT, ES_CODE, TRANSLATE, NOTIMESTAMPS, 17356, 290, 2513, 220,
             END_OF_TRANSCRIPT, END_OF_TRANSCRIPT, END_OF_TRANSCRIPT],
            [START_OF_TRANSCRIPT, ES_CODE, TRANSLATE, NOTIMESTAMPS, 17356, 290, 2513, 369,
             2279, 812, END_OF_TRANSCRIPT]
        ]
        # fmt: on

        self.assertListEqual(batch_output, EXPECTED_MULTI)

    def test_set_prefix_tokens(self):
        multilingual_tokenizer = WhisperTokenizer.from_pretrained(
            "openai/whisper-tiny", language="spanish", task="translate"
        )

        # change the language prefix token from Spanish to English
        multilingual_tokenizer.set_prefix_tokens(language="english")

        batch = ["the cat", "the cat sat"]
        batch_output = multilingual_tokenizer.batch_encode_plus(batch, padding=True).input_ids

        # fmt: off
        EXPECTED_MULTI = [
            [START_OF_TRANSCRIPT, EN_CODE, TRANSLATE, NOTIMESTAMPS, 3322, 3857,
             END_OF_TRANSCRIPT, END_OF_TRANSCRIPT],
            [START_OF_TRANSCRIPT, EN_CODE, TRANSLATE, NOTIMESTAMPS, 3322, 3857,
             3227, END_OF_TRANSCRIPT]
        ]
        # fmt: on

        self.assertListEqual(batch_output, EXPECTED_MULTI)

    def test_batch_encoding_decoding(self):
        multilingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny", language="spanish")
        batch = ["hola güey", "que onda"]
        batch_encoding = multilingual_tokenizer.batch_encode_plus(batch, padding=True).input_ids
        transcription = multilingual_tokenizer.batch_decode(batch_encoding, skip_special_tokens=True)
        self.assertListEqual(batch, transcription)

    def test_offset_decoding(self):
        multilingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny")
        # fmt: off
        INPUT_TOKENS = [
            50258, 50259, 50359, 50364, 441, 1857, 4174, 11, 5242, 366,
            257, 1333, 295, 493, 2794, 2287, 293, 12018, 14880, 11,
            293, 25730, 311, 454, 34152, 4496, 904, 50724, 50724, 366,
            382, 4048, 382, 257, 361, 18459, 13065, 13, 2221, 13,
            7145, 74, 325, 38756, 311, 29822, 7563, 412, 472, 709,
            294, 264, 51122, 51122, 912, 636, 300, 2221, 13, 2741,
            5767, 1143, 281, 7319, 702, 7798, 13, 400, 2221, 13,
            2619, 4004, 811, 2709, 702, 51449, 51449, 50257
        ]
        # fmt: on
        output = multilingual_tokenizer.decode(INPUT_TOKENS, output_offsets=True)["offsets"]

        self.assertEqual(
            output,
            [
                {
                    "text": (
                        " Lennils, pictures are a sort of upguards and atom paintings, and Mason's exquisite idles"
                    ),
                    "timestamp": (0.0, 7.2),
                },
                {
                    "text": (
                        " are as national as a jingo poem. Mr. Birkut Foster's landscapes smile at one much in the"
                    ),
                    "timestamp": (7.2, 15.16),
                },
                {
                    "text": " same way that Mr. Carker used to flash his teeth. And Mr. John Colier gives his",
                    "timestamp": (15.16, 21.7),
                },
            ],
        )
        # test `decode_with_offsets`
        output = multilingual_tokenizer.decode(INPUT_TOKENS, decode_with_timestamps=True)
        self.assertEqual(
            output,
            "<|startoftranscript|><|en|><|transcribe|><|0.00|> Lennils, pictures are a sort of upguards and atom"
            " paintings, and Mason's exquisite idles<|7.20|><|7.20|> are as national as a jingo poem. Mr. Birkut"
            " Foster's landscapes smile at one much in the<|15.16|><|15.16|> same way that Mr. Carker used to flash"
            " his teeth. And Mr. John Colier gives his<|21.70|><|21.70|><|endoftext|>",
        )
        # test a single sequence with timestamps
        # fmt: off
        INPUT_TOKENS = [
            50364, 441, 1857, 4174, 11, 5242, 366,
            257, 1333, 295, 493, 2794, 2287, 293, 12018, 14880, 11,
            293, 25730, 311, 454, 34152, 4496, 904, 50724
        ]
        # fmt: on

        output = multilingual_tokenizer.decode(INPUT_TOKENS, output_offsets=True)["offsets"]
        self.assertEqual(
            output[0],
            {
                "text": " Lennils, pictures are a sort of upguards and atom paintings, and Mason's exquisite idles",
                "timestamp": (0.0, 7.2),
            },
        )

        # test a sequence without a single timestamps
        # fmt: off
        INPUT_TOKENS = [
            441, 1857, 4174, 11, 5242, 366,
            257, 1333, 295, 493, 2794, 2287, 293, 12018, 14880, 11,
            293, 25730, 311, 454, 34152, 4496, 904, 50724
        ]
        # fmt: on

        output = multilingual_tokenizer.decode(INPUT_TOKENS, output_offsets=True)["offsets"]
        self.assertEqual(output, [])