Spaces:
Runtime error
Runtime error
File size: 17,970 Bytes
455a40f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers.models.whisper import WhisperTokenizer, WhisperTokenizerFast
from transformers.models.whisper.tokenization_whisper import _find_longest_common_sequence
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
ES_CODE = 50262
EN_CODE = 50259
END_OF_TRANSCRIPT = 50257
START_OF_TRANSCRIPT = 50258
TRANSLATE = 50358
TRANSCRIBE = 50359
NOTIMESTAMPS = 50363
class WhisperTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = WhisperTokenizer
rust_tokenizer_class = WhisperTokenizerFast
test_rust_tokenizer = True
test_sentencepiece = False
test_seq2seq = False
def setUp(self):
super().setUp()
tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny")
tokenizer.pad_token_id = 50256
tokenizer.pad_token = "<|endoftext|>"
tokenizer.save_pretrained(self.tmpdirname)
def test_convert_token_and_id(self):
"""Test ``_convert_token_to_id`` and ``_convert_id_to_token``."""
token = "Where"
token_id = 14436
self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token)
def test_get_vocab(self):
vocab_keys = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0], "!")
self.assertEqual(vocab_keys[1], '"')
self.assertEqual(vocab_keys[-1], "<|notimestamps|>")
self.assertEqual(len(vocab_keys), 50364)
def test_vocab_size(self):
self.assertEqual(self.get_tokenizer().vocab_size, 50258)
def test_full_tokenizer(self):
tokenizer = WhisperTokenizer.from_pretrained(self.tmpdirname)
tokens = tokenizer.tokenize("This is a test")
self.assertListEqual(tokens, ["This", "Ġis", "Ġa", "Ġ", "test"])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(tokens),
[5723, 307, 257, 220, 31636],
)
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
self.assertListEqual(
tokens,
# fmt: off
['I', 'Ġwas', 'Ġborn', 'Ġin', 'Ġ9', '2000', ',', 'Ġand', 'Ġ', 'this', 'Ġis', 'Ġfals', 'é', '.'],
# fmt: on
)
ids = tokenizer.convert_tokens_to_ids(tokens)
self.assertListEqual(ids, [40, 390, 4232, 294, 1722, 25743, 11, 293, 220, 11176, 307, 16720, 526, 13])
back_tokens = tokenizer.convert_ids_to_tokens(ids)
self.assertListEqual(
back_tokens,
# fmt: off
['I', 'Ġwas', 'Ġborn', 'Ġin', 'Ġ9', '2000', ',', 'Ġand', 'Ġ', 'this', 'Ġis', 'Ġfals', 'é', '.'],
# fmt: on
)
def test_tokenizer_slow_store_full_signature(self):
pass
def test_tokenizer_fast_store_full_signature(self):
pass
def test_special_tokens_initialization(self):
# Whisper relies on specific additional special tokens, so we skip this
# general test. In particular, this test loads fast tokenizer from slow
# tokenizer, and the conversion uses prefix_tokens, where we reference
# additional special tokens by specific indices, hence overriding the
# list with less tokens leads to out of index error
pass
@slow
def test_tokenizer_integration(self):
# fmt: off
expected_encoding = {'input_ids': [[50257, 50362, 41762, 364, 357, 36234, 1900, 355, 12972, 13165, 354, 12, 35636, 364, 290, 12972, 13165, 354, 12, 5310, 13363, 12, 4835, 8, 3769, 2276, 12, 29983, 45619, 357, 13246, 51, 11, 402, 11571, 12, 17, 11, 5564, 13246, 38586, 11, 16276, 44, 11, 4307, 346, 33, 861, 11, 16276, 7934, 23029, 329, 12068, 15417, 28491, 357, 32572, 52, 8, 290, 12068, 15417, 16588, 357, 32572, 38, 8, 351, 625, 3933, 10, 2181, 13363, 4981, 287, 1802, 10, 8950, 290, 2769, 48817, 1799, 1022, 449, 897, 11, 9485, 15884, 354, 290, 309, 22854, 37535, 13, 50256], [50257, 50362, 13246, 51, 318, 3562, 284, 662, 12, 27432, 2769, 8406, 4154, 282, 24612, 422, 9642, 9608, 276, 2420, 416, 26913, 21143, 319, 1111, 1364, 290, 826, 4732, 287, 477, 11685, 13, 50256], [50257, 50362, 464, 2068, 7586, 21831, 18045, 625, 262, 16931, 3290, 13, 50256]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=expected_encoding, model_name="openai/whisper-tiny.en", padding=False
)
def test_output_offsets(self):
tokenizer = self.get_tokenizer()
previous_sequence = [51492, 406, 3163, 1953, 466, 13, 51612, 51612]
self.assertEqual(
tokenizer.decode(previous_sequence, output_offsets=True),
{
"text": " not worth thinking about.",
"offsets": [{"text": " not worth thinking about.", "timestamp": (22.56, 24.96)}],
},
)
# Merge when the previous sequence is a suffix of the next sequence
# fmt: off
next_sequences_1 = [50364, 295, 6177, 3391, 11, 19817, 3337, 507, 307, 406, 3163, 1953, 466, 13, 50614, 50614, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50834, 50257]
# fmt: on
self.assertEqual(
tokenizer.decode(next_sequences_1, output_offsets=True),
{
"text": (
" of spectators, retrievality is not worth thinking about. His instant panic was followed by a"
" small, sharp blow high on his chest.<|endoftext|>"
),
"offsets": [
{"text": " of spectators, retrievality is not worth thinking about.", "timestamp": (0.0, 5.0)},
{
"text": " His instant panic was followed by a small, sharp blow high on his chest.",
"timestamp": (5.0, 9.4),
},
],
},
)
def test_find_longest_common_subsequence(self):
previous_sequence = [1, 2, 3]
next_sequence = [2, 3, 4, 5]
merge = _find_longest_common_sequence([previous_sequence, next_sequence])
self.assertEqual(merge, [1, 2, 3, 4, 5])
# Now previous is larger than next.
# We merge what we can and remove the extra right side of the left sequence
previous_sequence = [1, 2, 3, 4, 5, 6, 7]
next_sequence = [2, 3, 4, 5]
merge = _find_longest_common_sequence([previous_sequence, next_sequence])
self.assertEqual(merge, [1, 2, 3, 4, 5])
# Nothing in common
previous_sequence = [1, 2, 3]
next_sequence = [4, 5, 6]
merge = _find_longest_common_sequence([previous_sequence, next_sequence])
self.assertEqual(merge, [1, 2, 3, 4, 5, 6])
# Some errors in the overlap.
# We take from previous on the left, from the next on the right of the overlap
previous_sequence = [1, 2, 3, 4, 99]
next_sequence = [2, 98, 4, 5, 6]
merge = _find_longest_common_sequence([previous_sequence, next_sequence])
self.assertEqual(merge, [1, 2, 3, 4, 5, 6])
# We take from previous on the left, from the next on the right of the overlap
previous_sequence = [1, 2, 99, 4, 5]
next_sequence = [2, 3, 4, 98, 6]
merge = _find_longest_common_sequence([previous_sequence, next_sequence])
self.assertEqual(merge, [1, 2, 99, 4, 98, 6])
# This works on 3 sequences
seq1 = [1, 2, 3]
seq2 = [2, 3, 4]
seq3 = [3, 4, 5]
merge = _find_longest_common_sequence([seq1, seq2, seq3])
self.assertEqual(merge, [1, 2, 3, 4, 5])
# This works on 3 sequences with errors
seq1 = [1, 2, 3, 98, 5]
seq2 = [2, 99, 4, 5, 6, 7]
seq3 = [4, 97, 6, 7, 8]
merge = _find_longest_common_sequence([seq1, seq2, seq3])
self.assertEqual(merge, [1, 2, 3, 4, 5, 6, 7, 8])
class SpeechToTextTokenizerMultilinguialTest(unittest.TestCase):
checkpoint_name = "openai/whisper-small.en"
@classmethod
def setUpClass(cls):
cls.tokenizer: WhisperTokenizer = WhisperTokenizer.from_pretrained(cls.checkpoint_name)
return cls
def test_tokenizer_equivalence(self):
text = "다람쥐 헌 쳇바퀴에 타고파"
multilingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny", language="korean")
monolingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny.en")
monolingual_tokens = monolingual_tokenizer.encode(text, add_special_tokens=False)
multilingual_tokens = multilingual_tokenizer.encode(text, add_special_tokens=False)
assert monolingual_tokenizer.decode(monolingual_tokens) == text
assert multilingual_tokenizer.decode(multilingual_tokens) == text
assert len(monolingual_tokens) > len(multilingual_tokens)
# fmt: off
EXPECTED_ENG = [
46695, 97, 167, 252, 234, 168, 98, 238, 220, 169,
245, 234, 23821, 111, 229, 167, 108, 242, 169, 222,
112, 168, 245, 238, 220, 169, 225, 222, 166, 111,
254, 169, 234, 234
]
EXPECTED_MULTI = [
9835, 22855, 168, 98, 238, 13431, 234, 43517, 229, 47053,
169, 222, 19086, 19840, 1313, 17974
]
# fmt: on
self.assertListEqual(monolingual_tokens, EXPECTED_ENG)
self.assertListEqual(multilingual_tokens, EXPECTED_MULTI)
def test_tokenizer_special(self):
multilingual_tokenizer = WhisperTokenizer.from_pretrained(
"openai/whisper-tiny", language="english", task="transcribe"
)
text = "Hey! How are you feeling? J'ai l'impression que 郷さん est prêt"
multilingual_tokens = multilingual_tokenizer.encode(text)
# fmt: off
# format: <|startoftranscript|> <|lang-id|> <|task|> <|notimestamps|> ... transcription ids ... <|endoftext|>
EXPECTED_MULTI = [
START_OF_TRANSCRIPT, EN_CODE, TRANSCRIBE, NOTIMESTAMPS, 7057, 0, 1012, 366, 291,
2633, 30, 508, 6, 1301, 287, 6, 36107, 631, 220, 11178,
115, 15567, 871, 44393, END_OF_TRANSCRIPT
]
EXPECTED_SPECIAL_TEXT = (
"<|startoftranscript|><|en|><|transcribe|><|notimestamps|>Hey! How are you feeling? "
"J'ai l'impression que 郷さん est prêt<|endoftext|>"
)
# fmt: on
self.assertListEqual(multilingual_tokens, EXPECTED_MULTI)
special_transcript = multilingual_tokenizer.decode(multilingual_tokens, skip_special_tokens=False)
self.assertEqual(special_transcript, EXPECTED_SPECIAL_TEXT)
transcript = multilingual_tokenizer.decode(multilingual_tokens, skip_special_tokens=True)
self.assertEqual(transcript, text)
def test_vocab_size(self):
self.assertEqual(self.tokenizer.vocab_size, 50257)
# Copied from transformers.tests.speech_to_test.test_tokenization_speech_to_text.py
def test_tokenizer_decode_ignores_language_codes(self):
self.assertIn(ES_CODE, self.tokenizer.all_special_ids)
generated_ids = [ES_CODE, 4, 1601, 47, 7647, 2]
result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
expected_spanish = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
self.assertEqual(result, expected_spanish)
self.assertNotIn(self.tokenizer.eos_token, result)
def test_batch_encoding(self):
multilingual_tokenizer = WhisperTokenizer.from_pretrained(
"openai/whisper-tiny", language="spanish", task="translate"
)
batch = ["El gato ", "El gato se sentó"]
batch_output = multilingual_tokenizer.batch_encode_plus(batch, padding=True).input_ids
# fmt: off
EXPECTED_MULTI = [
[START_OF_TRANSCRIPT, ES_CODE, TRANSLATE, NOTIMESTAMPS, 17356, 290, 2513, 220,
END_OF_TRANSCRIPT, END_OF_TRANSCRIPT, END_OF_TRANSCRIPT],
[START_OF_TRANSCRIPT, ES_CODE, TRANSLATE, NOTIMESTAMPS, 17356, 290, 2513, 369,
2279, 812, END_OF_TRANSCRIPT]
]
# fmt: on
self.assertListEqual(batch_output, EXPECTED_MULTI)
def test_set_prefix_tokens(self):
multilingual_tokenizer = WhisperTokenizer.from_pretrained(
"openai/whisper-tiny", language="spanish", task="translate"
)
# change the language prefix token from Spanish to English
multilingual_tokenizer.set_prefix_tokens(language="english")
batch = ["the cat", "the cat sat"]
batch_output = multilingual_tokenizer.batch_encode_plus(batch, padding=True).input_ids
# fmt: off
EXPECTED_MULTI = [
[START_OF_TRANSCRIPT, EN_CODE, TRANSLATE, NOTIMESTAMPS, 3322, 3857,
END_OF_TRANSCRIPT, END_OF_TRANSCRIPT],
[START_OF_TRANSCRIPT, EN_CODE, TRANSLATE, NOTIMESTAMPS, 3322, 3857,
3227, END_OF_TRANSCRIPT]
]
# fmt: on
self.assertListEqual(batch_output, EXPECTED_MULTI)
def test_batch_encoding_decoding(self):
multilingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny", language="spanish")
batch = ["hola güey", "que onda"]
batch_encoding = multilingual_tokenizer.batch_encode_plus(batch, padding=True).input_ids
transcription = multilingual_tokenizer.batch_decode(batch_encoding, skip_special_tokens=True)
self.assertListEqual(batch, transcription)
def test_offset_decoding(self):
multilingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny")
# fmt: off
INPUT_TOKENS = [
50258, 50259, 50359, 50364, 441, 1857, 4174, 11, 5242, 366,
257, 1333, 295, 493, 2794, 2287, 293, 12018, 14880, 11,
293, 25730, 311, 454, 34152, 4496, 904, 50724, 50724, 366,
382, 4048, 382, 257, 361, 18459, 13065, 13, 2221, 13,
7145, 74, 325, 38756, 311, 29822, 7563, 412, 472, 709,
294, 264, 51122, 51122, 912, 636, 300, 2221, 13, 2741,
5767, 1143, 281, 7319, 702, 7798, 13, 400, 2221, 13,
2619, 4004, 811, 2709, 702, 51449, 51449, 50257
]
# fmt: on
output = multilingual_tokenizer.decode(INPUT_TOKENS, output_offsets=True)["offsets"]
self.assertEqual(
output,
[
{
"text": (
" Lennils, pictures are a sort of upguards and atom paintings, and Mason's exquisite idles"
),
"timestamp": (0.0, 7.2),
},
{
"text": (
" are as national as a jingo poem. Mr. Birkut Foster's landscapes smile at one much in the"
),
"timestamp": (7.2, 15.16),
},
{
"text": " same way that Mr. Carker used to flash his teeth. And Mr. John Colier gives his",
"timestamp": (15.16, 21.7),
},
],
)
# test `decode_with_offsets`
output = multilingual_tokenizer.decode(INPUT_TOKENS, decode_with_timestamps=True)
self.assertEqual(
output,
"<|startoftranscript|><|en|><|transcribe|><|0.00|> Lennils, pictures are a sort of upguards and atom"
" paintings, and Mason's exquisite idles<|7.20|><|7.20|> are as national as a jingo poem. Mr. Birkut"
" Foster's landscapes smile at one much in the<|15.16|><|15.16|> same way that Mr. Carker used to flash"
" his teeth. And Mr. John Colier gives his<|21.70|><|21.70|><|endoftext|>",
)
# test a single sequence with timestamps
# fmt: off
INPUT_TOKENS = [
50364, 441, 1857, 4174, 11, 5242, 366,
257, 1333, 295, 493, 2794, 2287, 293, 12018, 14880, 11,
293, 25730, 311, 454, 34152, 4496, 904, 50724
]
# fmt: on
output = multilingual_tokenizer.decode(INPUT_TOKENS, output_offsets=True)["offsets"]
self.assertEqual(
output[0],
{
"text": " Lennils, pictures are a sort of upguards and atom paintings, and Mason's exquisite idles",
"timestamp": (0.0, 7.2),
},
)
# test a sequence without a single timestamps
# fmt: off
INPUT_TOKENS = [
441, 1857, 4174, 11, 5242, 366,
257, 1333, 295, 493, 2794, 2287, 293, 12018, 14880, 11,
293, 25730, 311, 454, 34152, 4496, 904, 50724
]
# fmt: on
output = multilingual_tokenizer.decode(INPUT_TOKENS, output_offsets=True)["offsets"]
self.assertEqual(output, [])
|