File size: 44,763 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the TensorFlow Whisper model. """

import inspect
import tempfile
import traceback
import unittest

import numpy as np

from transformers import WhisperConfig, WhisperFeatureExtractor, WhisperProcessor
from transformers.testing_utils import is_tf_available, require_tf, require_tokenizers, run_test_in_subprocess, slow
from transformers.utils import cached_property
from transformers.utils.import_utils import is_datasets_available

from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_datasets_available():
    import datasets
    from datasets import load_dataset


if is_tf_available():
    import tensorflow as tf

    from transformers import TFWhisperForConditionalGeneration, TFWhisperModel, set_seed
    from transformers.models.whisper.modeling_tf_whisper import TFWhisperDecoder, TFWhisperEncoder


def prepare_whisper_inputs_dict(
    config,
    input_features,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
    head_mask=None,
    decoder_head_mask=None,
    cross_attn_head_mask=None,
):
    if decoder_attention_mask is None:
        decoder_attention_mask = tf.where(decoder_input_ids != config.pad_token_id, 1, 0)
    if head_mask is None:
        head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads))
    if decoder_head_mask is None:
        decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
    if cross_attn_head_mask is None:
        cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
    return {
        "input_features": input_features,
        "decoder_input_ids": decoder_input_ids,
        "decoder_attention_mask": decoder_attention_mask,
        "head_mask": head_mask,
        "decoder_head_mask": decoder_head_mask,
        "cross_attn_head_mask": cross_attn_head_mask,
    }


@require_tf
class TFWhisperModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=60,
        is_training=True,
        use_labels=False,
        vocab_size=200,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=4,
        input_channels=1,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=20,
        max_source_positions=30,
        max_target_positions=60,
        bos_token_id=98,
        eos_token_id=98,
        pad_token_id=0,
        num_mel_bins=80,
        decoder_start_token_id=85,
        num_conv_layers=1,
        suppress_tokens=None,
        begin_suppress_tokens=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.input_channels = input_channels
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.num_mel_bins = num_mel_bins
        self.max_position_embeddings = max_position_embeddings
        self.max_source_positions = max_source_positions
        self.max_target_positions = max_target_positions
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id
        self.decoder_start_token_id = decoder_start_token_id
        self.num_conv_layers = num_conv_layers
        self.suppress_tokens = suppress_tokens
        self.begin_suppress_tokens = begin_suppress_tokens

    def prepare_config_and_inputs(self):
        input_features = floats_tensor([self.batch_size, self.num_mel_bins, self.seq_length], self.vocab_size)

        decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        config = self.get_config()
        inputs_dict = prepare_whisper_inputs_dict(
            config,
            attention_mask=None,
            input_features=input_features,
            decoder_input_ids=decoder_input_ids,
        )
        return config, inputs_dict

    def get_config(self):
        return WhisperConfig(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            input_channels=self.input_channels,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            max_source_positions=self.max_source_positions,
            max_target_positions=self.max_target_positions,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            decoder_ffn_dim=self.hidden_size,
            encoder_ffn_dim=self.hidden_size,
            decoder_start_token_id=self.decoder_start_token_id,
            suppress_tokens=self.suppress_tokens,
            begin_suppress_tokens=self.begin_suppress_tokens,
        )

    def prepare_config_and_inputs_for_common(self):
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict

    def get_subsampled_output_lengths(self, input_lengths):
        """
        Computes the output length of the convolutional layers
        """

        for i in range(self.num_conv_layers):
            input_lengths = (input_lengths - 1) // 2 + 1

        return input_lengths

    def create_and_check_model_forward(self, config, inputs_dict):
        model = TFWhisperModel(config=config)

        input_features = inputs_dict["input_features"]
        decoder_input_ids = inputs_dict["decoder_input_ids"]

        # first forward pass
        last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state

        self.parent.assertTrue(last_hidden_state.shape, (13, 7, 16))

    def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = TFWhisperModel(config=config).get_decoder()
        # take a slice so we're shorter than the seqeuence length and can append later
        input_ids = inputs_dict["decoder_input_ids"][:, :-10]
        attention_mask = inputs_dict["decoder_attention_mask"][:, :-10]

        # first forward pass
        outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)

        output, past_key_values = outputs.to_tuple()

        # create hypothetical multiple next token and extent to next_input_ids
        next_token = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_tokens = tf.where(next_token <= 2, 2, next_token)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)

        # append to next input_ids and
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
            "last_hidden_state"
        ]

        # select random slice
        random_slice_idx = np.random.randint(0, output_from_past.shape[-1])
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(np.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2))

    def check_encoder_decoder_model_standalone(self, config, inputs_dict):
        model = TFWhisperModel(config=config)
        outputs = model(**inputs_dict)

        encoder_last_hidden_state = outputs.encoder_last_hidden_state
        last_hidden_state = outputs.last_hidden_state

        with tempfile.TemporaryDirectory() as tmpdirname:
            encoder = model.get_encoder()
            encoder.save_pretrained(tmpdirname)
            encoder = TFWhisperEncoder.from_pretrained(tmpdirname)

        encoder_last_hidden_state_2 = encoder(inputs_dict["input_features"])[0]

        self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max() < 1e-3)

        with tempfile.TemporaryDirectory() as tmpdirname:
            decoder = model.get_decoder()
            decoder.save_pretrained(tmpdirname)
            decoder = TFWhisperDecoder.from_pretrained(tmpdirname)

        last_hidden_state_2 = decoder(
            input_ids=inputs_dict["decoder_input_ids"],
            attention_mask=inputs_dict["decoder_attention_mask"],
            encoder_hidden_states=encoder_last_hidden_state,
        )[0]

        self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max() < 1e-3)


@require_tf
class TFWhisperModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (TFWhisperModel, TFWhisperForConditionalGeneration) if is_tf_available() else ()
    all_generative_model_classes = (TFWhisperForConditionalGeneration,) if is_tf_available() else ()
    pipeline_model_mapping = {"feature-extraction": TFWhisperModel} if is_tf_available() else {}
    is_encoder_decoder = True
    fx_compatible = False
    test_pruning = False
    test_missing_keys = False
    test_onnx = False

    input_name = "input_features"

    def setUp(self):
        self.model_tester = TFWhisperModelTester(self)
        self.config_tester = ConfigTester(self, config_class=WhisperConfig)
        self.maxDiff = 3000

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_save_load_strict(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
        for model_class in self.all_model_classes:
            model = model_class(config)

            model(model.dummy_inputs)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname, saved_model=False)
                model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
            self.assertEqual(info["missing_keys"], [])

    def test_model_forward(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_forward(*config_and_inputs)

    def test_decoder_model_past_with_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)

    def _get_input_ids_and_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict[self.input_name]

        # cut to half length & take max batch_size 3
        max_batch_size = 3
        input_ids = input_ids[:max_batch_size, :, :]

        # generate max 3 tokens
        max_length = input_ids.shape[-1] + 3
        if config.eos_token_id is not None and config.pad_token_id is None:
            # hack to allow generate for models such as GPT2 as is done in `generate()`
            config.pad_token_id = config.eos_token_id

        return config, input_ids, None, max_length

    # not implemented currently
    def test_inputs_embeds(self):
        pass

    @unittest.skip("Training is not yet supported")
    def test_training(self):
        pass

    def test_generate_with_head_masking(self):
        pass

    @unittest.skip("fp16 is not yet supported for TF models")
    def test_generate_fp16(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs()
        config.max_target_positions = 400
        input_features = input_dict["input_features"]
        model = TFWhisperForConditionalGeneration(config)
        model.generate(input_features)
        model.generate(input_features, num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = [
                "input_features",
                "decoder_input_ids",
                "decoder_attention_mask",
            ]
            expected_arg_names.extend(
                ["decoder_position_ids", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
                else ["encoder_outputs"]
            )
            self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states

            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)

            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
            else:
                seq_length = self.model_tester.seq_length

            subsampled_seq_length = model._get_feat_extract_output_lengths(seq_length)

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [subsampled_seq_length, self.model_tester.hidden_size],
            )

            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)

                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_length)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        seq_len = getattr(self.model_tester, "seq_length", None)
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", encoder_key_length)

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)

            subsampled_encoder_seq_length = model._get_feat_extract_output_lengths(encoder_seq_length)
            subsampled_encoder_key_length = model._get_feat_extract_output_lengths(encoder_key_length)

            outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)

            outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length],
            )
            out_len = len(outputs)

            correct_outlen = 5

            # loss is at first position
            if "labels" in inputs_dict:
                correct_outlen += 1  # loss is added to beginning
            if "past_key_values" in outputs:
                correct_outlen += 1  # past_key_values have been returned

            self.assertEqual(out_len, correct_outlen)

            # decoder attentions
            decoder_attentions = outputs.decoder_attentions
            self.assertIsInstance(decoder_attentions, (list, tuple))
            self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(decoder_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
            )

            # cross attentions
            cross_attentions = outputs.cross_attentions
            self.assertIsInstance(cross_attentions, (list, tuple))
            self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(cross_attentions[0].shape[-3:]),
                [
                    self.model_tester.num_attention_heads,
                    decoder_seq_length,
                    subsampled_encoder_key_length,
                ],
            )

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            added_hidden_states = 2
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length],
            )

    def test_generate_without_input_ids(self):
        pass

    @staticmethod
    def _get_encoder_outputs(
        model, input_ids, attention_mask, output_attentions=None, output_hidden_states=None, num_interleave=1
    ):
        encoder = model.get_encoder()
        encoder_outputs = encoder(
            input_ids,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
        encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave(
            num_interleave, dim=0
        )
        input_ids = input_ids[:, :, 0]
        input_ids = tf.zeros_like(input_ids[:, :1], dtype=tf.int64) + tf.convert_to_tensor(
            [model._get_decoder_start_token_id()]
        )
        attention_mask = None
        return encoder_outputs, input_ids, attention_mask

    def _check_outputs(self, output, input_ids, config, use_cache=False, num_return_sequences=1):
        batch_size, mel, seq_length = input_ids.shape
        subsampled_seq_length = self.model_tester.get_subsampled_output_lengths(seq_length)
        num_sequences_in_output = batch_size * num_return_sequences
        gen_len = (
            output.sequences.shape[-1] - 1 if config.is_encoder_decoder else output.sequences.shape[-1] - seq_length
        )

        # scores
        self._check_scores(num_sequences_in_output, output.scores, length=gen_len, config=config)

        # Attentions
        # encoder
        self._check_encoder_attention_for_generate(
            output.encoder_attentions, batch_size, config, subsampled_seq_length
        )
        # decoder
        self._check_attentions_for_generate(
            num_sequences_in_output,
            output.decoder_attentions,
            min_length=1,
            max_length=output.sequences.shape[-1],
            config=config,
            use_cache=use_cache,
        )

        # Hidden States
        # encoder
        self._check_encoder_hidden_states_for_generate(
            output.encoder_hidden_states, batch_size, config, subsampled_seq_length
        )

        # decoder
        self._check_hidden_states_for_generate(
            num_sequences_in_output,
            output.decoder_hidden_states,
            min_length=1,
            max_length=output.sequences.shape[-1],
            config=config,
            use_cache=use_cache,
        )

    # overwritten from parent due to the inability to work when non-text inputs are not passed AND because the input is
    # `input_features`
    def test_lm_head_model_random_no_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_features = inputs_dict.get("input_features", None)

        # iterate over all generative models
        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
                # if bos token id is not defined model needs input_features
                with self.assertRaises(AssertionError):
                    model.generate(do_sample=True, max_length=5)
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(input_features, do_sample=True))

            with self.assertRaises(ValueError):
                # generating multiple sequences when no beam search generation
                # is not allowed as it would always generate the same sequences
                model.generate(input_features, do_sample=False, num_return_sequences=2)

            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_features, do_sample=True, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
            output_tokens = model.generate(
                input_features, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
            )
            # only count generated tokens
            generated_ids = output_tokens[:, input_features.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))

    # overwritten from parent due to the inability to work when non-text inputs are not passed AND because the input is
    # `input_features`
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_features = inputs_dict.get("input_features", None)

        for model_class in self.all_generative_model_classes:
            model = model_class(config)

            if config.bos_token_id is None:
                # if bos token id is not defined model needs input_ids, num_return_sequences = 1
                self._check_generated_ids(model.generate(input_features, do_sample=True, num_beams=2))

            with self.assertRaises(ValueError):
                # generating more sequences than having beams leads is not possible
                model.generate(input_features, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
            self._check_generated_ids(
                model.generate(
                    input_features,
                    do_sample=True,
                    num_beams=2,
                    num_return_sequences=2,
                )
            )
            # num_return_sequences > 1, greedy
            self._check_generated_ids(
                model.generate(input_features, do_sample=False, num_beams=2, num_return_sequences=2)
            )

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
            bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)]
            output_tokens = model.generate(
                input_features, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
            )
            # only count generated tokens
            generated_ids = output_tokens[:, input_features.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids))


def _load_datasamples(num_samples):
    ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
    # automatic decoding with librispeech
    speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]

    return [x["array"] for x in speech_samples]


def _test_large_logits_librispeech(in_queue, out_queue, timeout):
    error = None
    try:
        _ = in_queue.get(timeout=timeout)

        set_seed(0)

        model = TFWhisperModel.from_pretrained("openai/whisper-large")

        input_speech = _load_datasamples(1)

        processor = WhisperProcessor.from_pretrained("openai/whisper-large")
        processed_inputs = processor(
            audio=input_speech, text="This part of the speech", add_special_tokens=False, return_tensors="tf"
        )
        input_features = processed_inputs.input_features
        decoder_input_ids = processed_inputs.labels

        logits = model(
            input_features,
            decoder_input_ids=decoder_input_ids,
            output_hidden_states=False,
            output_attentions=False,
            use_cache=False,
        )

        logits = logits.last_hidden_state @ tf.transpose(model.model.decoder.embed_tokens.weights[0])

        # fmt: off
        EXPECTED_LOGITS = tf.convert_to_tensor(
            [
                2.1382, 0.9381, 4.4671, 3.5589, 2.4022, 3.8576, -0.6521, 2.5472,
                1.8301, 1.9957, 2.3432, 1.4678, 0.5459, 2.2597, 1.5179, 2.5357,
                1.1624, 0.6194, 1.0757, 1.8259, 2.4076, 1.6601, 2.3503, 1.3376,
                1.9891, 1.8635, 3.8931, 5.3699, 4.4772, 3.9184
            ]
        )
        # fmt: on

        unittest.TestCase().assertTrue(np.allclose(logits[0, 0, :30], EXPECTED_LOGITS, atol=1e-4))
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


def _test_large_generation(in_queue, out_queue, timeout):
    error = None
    try:
        _ = in_queue.get(timeout=timeout)

        set_seed(0)
        processor = WhisperProcessor.from_pretrained("openai/whisper-large")
        model = TFWhisperForConditionalGeneration.from_pretrained("openai/whisper-large")

        input_speech = _load_datasamples(1)
        input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="tf").input_features

        generated_ids = model.generate(
            input_features, do_sample=False, max_length=20, language="<|en|>", task="transcribe"
        )
        transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

        EXPECTED_TRANSCRIPT = " Mr. Quilter is the apostle of the middle classes and we are glad"
        unittest.TestCase().assertEqual(transcript, EXPECTED_TRANSCRIPT)
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


def _test_large_generation_multilingual(in_queue, out_queue, timeout):
    error = None
    try:
        _ = in_queue.get(timeout=timeout)

        set_seed(0)
        processor = WhisperProcessor.from_pretrained("openai/whisper-large")
        model = TFWhisperForConditionalGeneration.from_pretrained("openai/whisper-large")

        ds = load_dataset("common_voice", "ja", split="test", streaming=True)
        ds = ds.cast_column("audio", datasets.Audio(sampling_rate=16_000))
        input_speech = next(iter(ds))["audio"]["array"]
        input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="tf").input_features

        generated_ids = model.generate(
            input_features, do_sample=False, max_length=20, language="<|ja|>", task="transcribe"
        )
        transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

        EXPECTED_TRANSCRIPT = "木村さんに電話を貸してもらいました"
        unittest.TestCase().assertEqual(transcript, EXPECTED_TRANSCRIPT)

        generated_ids = model.generate(
            input_features, do_sample=False, max_length=20, language="<|en|>", task="transcribe"
        )
        transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

        EXPECTED_TRANSCRIPT = " Kimura-san called me."
        unittest.TestCase().assertEqual(transcript, EXPECTED_TRANSCRIPT)

        generated_ids = model.generate(
            input_features, do_sample=False, max_length=20, language="<|ja|>", task="translate"
        )
        transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

        EXPECTED_TRANSCRIPT = " I borrowed a phone from Kimura san"
        unittest.TestCase().assertEqual(transcript, EXPECTED_TRANSCRIPT)
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


def _test_large_batched_generation(in_queue, out_queue, timeout):
    error = None
    try:
        _ = in_queue.get(timeout=timeout)

        set_seed(0)
        processor = WhisperProcessor.from_pretrained("openai/whisper-large")
        model = TFWhisperForConditionalGeneration.from_pretrained("openai/whisper-large")

        input_speech = _load_datasamples(4)
        input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="tf").input_features
        generated_ids_1 = model.generate(input_features[0:2], max_length=20)
        generated_ids_2 = model.generate(input_features[2:4], max_length=20)
        generated_ids = np.concatenate([generated_ids_1, generated_ids_2])

        # fmt: off
        EXPECTED_LOGITS = tf.convert_to_tensor(
            [
                [50258, 50259, 50358, 50363, 2221, 13, 2326, 388, 391, 307, 264, 50244, 295, 264, 2808, 5359, 293, 321, 366, 5404],
                [50258, 50259, 50358, 50363, 6966, 307, 2221, 13, 2326, 388, 391, 311, 9060, 1570, 1880, 813, 702, 1871, 13, 50257],
                [50258, 50259, 50358, 50363, 634, 5112, 505, 300, 412, 341, 42729, 3196, 295, 264, 1064, 11, 365, 5272, 293, 12904],
                [50258, 50259, 50358, 50363, 634, 575, 12525, 22618, 1968, 6144, 35617, 20084, 1756, 311, 589, 307, 534, 10281, 934, 439]
            ]
        )
        # fmt: on

        unittest.TestCase().assertTrue(np.allclose(generated_ids, EXPECTED_LOGITS))

        # fmt: off
        EXPECTED_TRANSCRIPT = [
            " Mr. Quilter is the apostle of the middle classes and we are glad",
            " Nor is Mr. Quilter's manner less interesting than his matter.",
            " He tells us that at this festive season of the year, with Christmas and roast",
            " He has grave doubts whether Sir Frederick Layton's work is really Greek after all",
        ]
        # fmt: on

        transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)
        unittest.TestCase().assertListEqual(transcript, EXPECTED_TRANSCRIPT)
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


@require_tf
@require_tokenizers
class TFWhisperModelIntegrationTests(unittest.TestCase):
    @cached_property
    def default_processor(self):
        return WhisperProcessor.from_pretrained("openai/whisper-base")

    def _load_datasamples(self, num_samples):
        return _load_datasamples(num_samples)

    @slow
    def test_tiny_logits_librispeech(self):
        set_seed(0)
        model = TFWhisperModel.from_pretrained("openai/whisper-tiny")
        input_speech = self._load_datasamples(1)
        feature_extractor = WhisperFeatureExtractor()
        input_features = feature_extractor(input_speech, return_tensors="tf").input_features

        logits = model(
            input_features,
            decoder_input_ids=tf.convert_to_tensor([[50258, 50259, 50359]]),
            output_hidden_states=False,
            output_attentions=False,
            return_dict=False,
            use_cache=False,
        )

        # fmt: off
        EXPECTED_LOGITS = tf.convert_to_tensor(
            [
                2.9892, -6.7607, 5.7348, 3.6096, 0.2152, -5.7321, 4.8855, -1.6407,
                0.2823, -1.5718, 10.4269, 3.4427, 0.0219, -8.0612, 3.4784, 8.4246,
                4.0575, -2.2864, 11.1084, 0.9963, 0.9884, -8.5154, -3.5469, -9.3713,
                0.9786, 3.5435, 7.4850, -5.2579, -1.4366, 10.4841
            ]
        )
        # fmt: on
        self.assertTrue(np.allclose(logits[0][0, 0, :30], EXPECTED_LOGITS, atol=1e-4))

        # fmt: off
        EXPECTED_GENERATION = tf.convert_to_tensor(
            [
                -1.4651, -2.6944, 2.7821, 2.3793, 4.0738, 0.0188, -3.3203, 1.9836,
                0.0520, 0.7095, 1.1063, 0.2952, -3.6786, -0.5249, 0.3105, 4.7691,
                1.1562, 1.3046, 0.5810, -0.3624, 1.7006, 1.3424, 0.9817, 2.1958,
                1.8775, -5.7046, -0.7679, 4.0113, 2.6848, 2.8609
            ]
        )
        # fmt: on

        head_logits = logits[0] @ tf.transpose(model.model.decoder.embed_tokens.weights[0])
        self.assertTrue(np.allclose(head_logits[0, 0, :30], EXPECTED_GENERATION, atol=1e-4))

    @slow
    def test_small_en_logits_librispeech(self):
        set_seed(0)
        model = TFWhisperModel.from_pretrained("openai/whisper-small.en")

        input_speech = self._load_datasamples(1)

        feaure_extractor = WhisperFeatureExtractor()
        input_features = feaure_extractor(input_speech, return_tensors="tf").input_features

        logits = model(
            input_features,
            decoder_input_ids=tf.convert_to_tensor([[model.config.decoder_start_token_id]]),
            output_hidden_states=False,
            output_attentions=False,
            use_cache=False,
        )

        logits = logits.last_hidden_state @ tf.transpose(model.model.decoder.embed_tokens.weights[0])

        # fmt: off
        EXPECTED_LOGITS = tf.convert_to_tensor(
            [
                -3.6784, -7.7211, -9.5070, -11.9286, -7.6489, -9.7026, -5.6188,
                -8.0104, -4.6238, -5.1833, -9.0485, -3.4079, -5.4874, -2.6935,
                -6.3479, -7.3398, -6.9558, -7.6867, -7.4748, -8.3463, -9.9781,
                -10.8389, -10.3105, -11.7201, -9.7261, -7.1590, -5.9272, -12.4509,
                -11.1146, -8.1918
            ]
        )
        # fmt: on
        self.assertTrue(np.allclose(logits[0, 0, :30], EXPECTED_LOGITS, atol=1e-4))

    @slow
    def test_large_logits_librispeech(self):
        run_test_in_subprocess(test_case=self, target_func=_test_large_logits_librispeech, inputs=None)

    @slow
    def test_tiny_en_generation(self):
        set_seed(0)
        processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
        model = TFWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
        model.config.decoder_start_token_id = 50257

        input_speech = self._load_datasamples(1)
        input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="tf").input_features

        generated_ids = model.generate(input_features, num_beams=5, max_length=20)
        transcript = processor.tokenizer.batch_decode(generated_ids)[0]

        EXPECTED_TRANSCRIPT = (
            "<|startoftranscript|><|notimestamps|> Mr. Quilter is the apostle of the middle"
            " classes, and we are glad to"
        )
        self.assertEqual(transcript, EXPECTED_TRANSCRIPT)

    @slow
    def test_tiny_generation(self):
        set_seed(0)
        processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
        model = TFWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")

        input_speech = self._load_datasamples(1)
        input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="tf").input_features

        generated_ids = model.generate(input_features, num_beams=5, max_length=20)
        transcript = processor.tokenizer.decode(generated_ids[0])

        EXPECTED_TRANSCRIPT = (
            "<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle"
            " classes and we are glad"
        )
        self.assertEqual(transcript, EXPECTED_TRANSCRIPT)

    @slow
    def test_tiny_xla_generation(self):
        set_seed(0)
        processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
        model = TFWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")

        input_speech = self._load_datasamples(1)
        input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="tf").input_features

        xla_generate = tf.function(model.generate, jit_compile=True)

        generated_ids = model.generate(input_features, num_beams=5, max_length=20)
        generated_ids_xla = xla_generate(input_features, num_beams=5, max_length=20)

        transcript = processor.tokenizer.decode(generated_ids[0])
        transcript_xla = processor.tokenizer.decode(generated_ids_xla[0])

        EXPECTED_TRANSCRIPT = (
            "<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle"
            " classes and we are glad"
        )
        self.assertEqual(transcript, EXPECTED_TRANSCRIPT)
        self.assertEqual(transcript_xla, EXPECTED_TRANSCRIPT)

    @slow
    def test_large_generation(self):
        run_test_in_subprocess(test_case=self, target_func=_test_large_generation, inputs=None)

    @slow
    def test_large_generation_multilingual(self):
        run_test_in_subprocess(test_case=self, target_func=_test_large_generation_multilingual, inputs=None)

    @slow
    def test_large_batched_generation(self):
        run_test_in_subprocess(test_case=self, target_func=_test_large_batched_generation, inputs=None)

    @slow
    def test_tiny_en_batched_generation(self):
        set_seed(0)
        processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
        model = TFWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")

        input_speech = self._load_datasamples(4)
        input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="tf").input_features
        generated_ids = model.generate(input_features, max_length=20)

        # fmt: off
        EXPECTED_LOGITS = tf.convert_to_tensor(
            [
                [50257, 50362, 1770, 13, 2264, 346, 353, 318, 262, 46329, 286, 262, 3504, 6097, 11, 290, 356, 389, 9675, 284],
                [50257, 50362, 5414, 318, 1770, 13, 2264, 346, 353, 338, 5642, 1342, 3499, 621, 465, 2300, 13, 50256, 50256, 50256],
                [50257, 50362, 679, 4952, 514, 326, 379, 428, 43856, 1622, 286, 262, 614, 11, 351, 6786, 290, 32595, 12023, 28236],
                [50257, 50362, 679, 468, 12296, 17188, 1771, 7361, 26113, 18881, 1122, 338, 670, 318, 1107, 8312, 706, 477, 290, 460]
            ]

        )
        # fmt: on

        self.assertTrue(np.allclose(generated_ids, EXPECTED_LOGITS))

        # fmt: off
        EXPECTED_TRANSCRIPT = [
            " Mr. Quilter is the apostle of the middle classes, and we are glad to",
            " Nor is Mr. Quilter's manner less interesting than his matter.",
            " He tells us that at this festive season of the year, with Christmas and roast beef looming",
            " He has grave doubts whether Sir Frederick Layton's work is really Greek after all and can",
        ]
        # fmt: on

        transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)
        self.assertListEqual(transcript, EXPECTED_TRANSCRIPT)

    @slow
    def test_tiny_en_batched_xla_generation(self):
        set_seed(0)
        processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
        model = TFWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")

        input_speech = self._load_datasamples(4)
        input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="tf").input_features

        xla_generate = tf.function(model.generate, jit_compile=True)

        generated_ids = model.generate(input_features, max_length=20)
        generated_ids_xla = xla_generate(input_features, max_length=20)

        # fmt: off
        EXPECTED_LOGITS = tf.convert_to_tensor(
            [
                [50257, 50362, 1770, 13, 2264, 346, 353, 318, 262, 46329, 286, 262, 3504, 6097, 11, 290, 356, 389, 9675, 284],
                [50257, 50362, 5414, 318, 1770, 13, 2264, 346, 353, 338, 5642, 1342, 3499, 621, 465, 2300, 13, 50256, 50256, 50256],
                [50257, 50362, 679, 4952, 514, 326, 379, 428, 43856, 1622, 286, 262, 614, 11, 351, 6786, 290, 32595, 12023, 28236],
                [50257, 50362, 679, 468, 12296, 17188, 1771, 7361, 26113, 18881, 1122, 338, 670, 318, 1107, 8312, 706, 477, 290, 460]
            ]

        )
        # fmt: on

        self.assertTrue(np.allclose(generated_ids, EXPECTED_LOGITS))
        self.assertTrue(np.allclose(generated_ids_xla, EXPECTED_LOGITS))

        # fmt: off
        EXPECTED_TRANSCRIPT = [
            " Mr. Quilter is the apostle of the middle classes, and we are glad to",
            " Nor is Mr. Quilter's manner less interesting than his matter.",
            " He tells us that at this festive season of the year, with Christmas and roast beef looming",
            " He has grave doubts whether Sir Frederick Layton's work is really Greek after all and can",
        ]
        # fmt: on

        transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)
        transcript_xla = processor.batch_decode(generated_ids_xla, skip_special_tokens=True)
        self.assertListEqual(transcript, EXPECTED_TRANSCRIPT)
        self.assertListEqual(transcript_xla, EXPECTED_TRANSCRIPT)