File size: 31,917 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import functools
import inspect
import tempfile
import unittest

import transformers
from transformers import WhisperConfig, is_flax_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, slow
from transformers.utils import cached_property
from transformers.utils.import_utils import is_datasets_available

from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor


if is_datasets_available():
    import datasets
    from datasets import load_dataset

if is_flax_available():
    import jax
    import numpy as np
    from flax.core.frozen_dict import unfreeze
    from flax.traverse_util import flatten_dict

    from transformers import (
        FLAX_MODEL_MAPPING,
        FlaxWhisperForConditionalGeneration,
        FlaxWhisperModel,
        WhisperFeatureExtractor,
        WhisperProcessor,
    )
    from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model


@require_flax
class FlaxWhisperModelTester:
    config_cls = WhisperConfig
    config_updates = {}
    hidden_act = "gelu"

    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=60,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        d_model=16,
        decoder_attention_heads=4,
        decoder_ffn_dim=16,
        decoder_layers=2,
        encoder_attention_heads=4,
        encoder_ffn_dim=16,
        encoder_layers=2,
        input_channels=1,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=70,
        max_source_positions=30,
        max_target_positions=40,
        bos_token_id=98,
        eos_token_id=98,
        pad_token_id=0,
        num_mel_bins=80,
        decoder_start_token_id=85,
        num_conv_layers=1,
        suppress_tokens=None,
        begin_suppress_tokens=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.d_model = d_model
        self.hidden_size = d_model
        self.num_hidden_layers = encoder_layers
        self.num_attention_heads = encoder_attention_heads
        self.decoder_attention_heads = decoder_attention_heads
        self.decoder_ffn_dim = decoder_ffn_dim
        self.decoder_layers = decoder_layers
        self.encoder_attention_heads = encoder_attention_heads
        self.encoder_ffn_dim = encoder_ffn_dim
        self.encoder_layers = encoder_layers
        self.encoder_seq_length = seq_length // 2
        self.decoder_seq_length = 1
        self.input_channels = input_channels
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.num_mel_bins = num_mel_bins
        self.max_position_embeddings = max_position_embeddings
        self.max_source_positions = max_source_positions
        self.max_target_positions = max_target_positions
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id
        self.decoder_start_token_id = decoder_start_token_id
        self.num_conv_layers = num_conv_layers
        self.suppress_tokens = suppress_tokens
        self.begin_suppress_tokens = begin_suppress_tokens

    def prepare_config_and_inputs_for_common(self):
        input_features = floats_tensor([self.batch_size, self.num_mel_bins, self.seq_length], self.vocab_size)

        decoder_input_ids = np.array(self.batch_size * [[self.decoder_start_token_id]])

        config = WhisperConfig(
            vocab_size=self.vocab_size,
            num_mel_bins=self.num_mel_bins,
            decoder_start_token_id=self.decoder_start_token_id,
            is_encoder_decoder=True,
            activation_function=self.hidden_act,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_source_positions=self.max_source_positions,
            max_target_positions=self.max_target_positions,
            pad_token_id=self.pad_token_id,
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
            tie_word_embeddings=True,
            d_model=self.d_model,
            decoder_attention_heads=self.decoder_attention_heads,
            decoder_ffn_dim=self.decoder_ffn_dim,
            decoder_layers=self.decoder_layers,
            encoder_attention_heads=self.encoder_attention_heads,
            encoder_ffn_dim=self.encoder_ffn_dim,
            encoder_layers=self.encoder_layers,
            suppress_tokens=self.suppress_tokens,
            begin_suppress_tokens=self.begin_suppress_tokens,
        )
        inputs_dict = prepare_whisper_inputs_dict(config, input_features, decoder_input_ids)
        return config, inputs_dict


def prepare_whisper_inputs_dict(
    config,
    input_ids,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
):
    if decoder_attention_mask is None:
        decoder_attention_mask = np.concatenate(
            [
                np.ones(decoder_input_ids[:, :1].shape, dtype=np.int8),
                np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id).astype(np.int8),
            ],
            axis=-1,
        )
    return {
        "input_features": input_ids,
        "decoder_input_ids": decoder_input_ids,
        "decoder_attention_mask": decoder_attention_mask,
    }


def partialclass(cls, *args, **kwargs):
    class NewCls(cls):
        __init__ = functools.partialmethod(cls.__init__, *args, **kwargs)

    return NewCls


def make_partial_class(full_class, *args, **kwargs):
    partial_class = partialclass(full_class, *args, **kwargs)
    partial_class.__name__ = full_class.__name__
    partial_class.__module__ = full_class.__module__

    return partial_class


@require_flax
class FlaxWhisperModelTest(FlaxModelTesterMixin, unittest.TestCase):
    all_model_classes = (FlaxWhisperForConditionalGeneration, FlaxWhisperModel) if is_flax_available() else ()
    all_generative_model_classes = (FlaxWhisperForConditionalGeneration,) if is_flax_available() else ()
    is_encoder_decoder = True
    test_pruning = False
    test_head_masking = False
    test_onnx = False

    def setUp(self):
        self.model_tester = FlaxWhisperModelTester(self)
        _, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self.init_shape = (1,) + inputs_dict["input_features"].shape[1:]

        self.all_model_classes = (
            make_partial_class(model_class, input_shape=self.init_shape) for model_class in self.all_model_classes
        )
        self.config_tester = ConfigTester(self, config_class=WhisperConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    # overwrite because of `input_features`
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.__call__)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["input_features", "decoder_input_ids"]
            self.assertListEqual(arg_names[:2], expected_arg_names)

    # overwrite because of `input_features`
    def test_jit_compilation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
                model = model_class(config)

                @jax.jit
                def model_jitted(input_features, decoder_input_ids, **kwargs):
                    return model(input_features=input_features, decoder_input_ids=decoder_input_ids, **kwargs)

                with self.subTest("JIT Enabled"):
                    jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple()

                with self.subTest("JIT Disabled"):
                    with jax.disable_jit():
                        outputs = model_jitted(**prepared_inputs_dict).to_tuple()

                self.assertEqual(len(outputs), len(jitted_outputs))
                for jitted_output, output in zip(jitted_outputs, outputs):
                    self.assertEqual(jitted_output.shape, output.shape)

    # overwrite because of `input_features`
    @is_pt_flax_cross_test
    def test_save_load_bf16_to_base_pt(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = make_partial_class(FLAX_MODEL_MAPPING[config.__class__], input_shape=self.init_shape)

        for model_class in self.all_model_classes:
            if model_class.__name__ == base_class.__name__:
                continue

            model = model_class(config)
            model.params = model.to_bf16(model.params)
            base_params_from_head = flatten_dict(unfreeze(model.params[model.base_model_prefix]))

            # convert Flax model to PyTorch model
            pt_model_class = getattr(transformers, model_class.__name__[4:])  # Skip the "Flax" at the beginning
            pt_model = pt_model_class(config).eval()
            pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)

            # check that all base model weights are loaded correctly
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname)
                base_model = base_class.from_pretrained(tmpdirname, from_pt=True)

                base_params = flatten_dict(unfreeze(base_model.params))

                for key in base_params_from_head.keys():
                    max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    # overwrite because of `input_features`
    @is_pt_flax_cross_test
    def test_save_load_from_base_pt(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = make_partial_class(FLAX_MODEL_MAPPING[config.__class__], input_shape=self.init_shape)

        for model_class in self.all_model_classes:
            if model_class.__name__ == base_class.__name__:
                continue

            model = base_class(config)
            base_params = flatten_dict(unfreeze(model.params))

            # convert Flax model to PyTorch model
            pt_model_class = getattr(transformers, base_class.__name__[4:])  # Skip the "Flax" at the beginning
            pt_model = pt_model_class(config).eval()
            pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)

            # check that all base model weights are loaded correctly
            with tempfile.TemporaryDirectory() as tmpdirname:
                # save pt model
                pt_model.save_pretrained(tmpdirname)
                head_model = model_class.from_pretrained(tmpdirname, from_pt=True)

                base_param_from_head = flatten_dict(unfreeze(head_model.params[head_model.base_model_prefix]))

                for key in base_param_from_head.keys():
                    max_diff = (base_params[key] - base_param_from_head[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    # overwrite because of `input_features`
    @is_pt_flax_cross_test
    def test_save_load_to_base_pt(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = make_partial_class(FLAX_MODEL_MAPPING[config.__class__], input_shape=self.init_shape)

        for model_class in self.all_model_classes:
            if model_class.__name__ == base_class.__name__:
                continue

            model = model_class(config)
            base_params_from_head = flatten_dict(unfreeze(model.params[model.base_model_prefix]))

            # convert Flax model to PyTorch model
            pt_model_class = getattr(transformers, model_class.__name__[4:])  # Skip the "Flax" at the beginning
            pt_model = pt_model_class(config).eval()
            pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)

            # check that all base model weights are loaded correctly
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname)
                base_model = base_class.from_pretrained(tmpdirname, from_pt=True)

                base_params = flatten_dict(unfreeze(base_model.params))

                for key in base_params_from_head.keys():
                    max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    # overwrite because of `input_features`
    def test_save_load_from_base(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = make_partial_class(FLAX_MODEL_MAPPING[config.__class__], input_shape=self.init_shape)

        for model_class in self.all_model_classes:
            if model_class.__name__ == base_class.__name__:
                continue

            model = base_class(config)
            base_params = flatten_dict(unfreeze(model.params))

            # check that all base model weights are loaded correctly
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                head_model = model_class.from_pretrained(tmpdirname)

                base_param_from_head = flatten_dict(unfreeze(head_model.params[head_model.base_model_prefix]))

                for key in base_param_from_head.keys():
                    max_diff = (base_params[key] - base_param_from_head[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    # overwrite because of `input_features`
    def test_save_load_to_base(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = make_partial_class(FLAX_MODEL_MAPPING[config.__class__], input_shape=self.init_shape)

        for model_class in self.all_model_classes:
            if model_class.__name__ == base_class.__name__:
                continue

            model = model_class(config)
            base_params_from_head = flatten_dict(unfreeze(model.params[model.base_model_prefix]))

            # check that all base model weights are loaded correctly
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                base_model = base_class.from_pretrained(tmpdirname)

                base_params = flatten_dict(unfreeze(base_model.params))

                for key in base_params_from_head.keys():
                    max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")


@slow
@require_flax
class FlaxWhisperModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_processor(self):
        return WhisperProcessor.from_pretrained("openai/whisper-base")

    def _load_datasamples(self, num_samples):
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        # automatic decoding with librispeech
        speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]

        return [x["array"] for x in speech_samples]

    def test_tiny_logits_librispeech(self):
        model = FlaxWhisperModel.from_pretrained("openai/whisper-tiny", from_pt=True)
        input_speech = self._load_datasamples(1)
        feature_extractor = WhisperFeatureExtractor()
        input_features = feature_extractor(input_speech, return_tensors="np").input_features

        logits = model(
            input_features,
            decoder_input_ids=np.array([[50258, 50259, 50359]]),
            output_hidden_states=False,
            output_attentions=False,
            return_dict=False,
        )

        # fmt: off
        EXPECTED_LOGITS = np.array(
            [
                2.9892, -6.7607, 5.7348, 3.6096, 0.2152, -5.7321, 4.8855, -1.6407,
                0.2823, -1.5718, 10.4269, 3.4427, 0.0219, -8.0612, 3.4784, 8.4246,
                4.0575, -2.2864, 11.1084, 0.9963, 0.9884, -8.5154, -3.5469, -9.3713,
                0.9786, 3.5435, 7.4850, -5.2579, -1.4366, 10.4841
            ]
        )
        # fmt: on
        self.assertTrue(np.allclose(logits[0][0, 0, :30], EXPECTED_LOGITS, atol=1e-4))

    def test_small_en_logits_librispeech(self):
        model = FlaxWhisperModel.from_pretrained("openai/whisper-small.en", from_pt=True)
        input_speech = self._load_datasamples(1)
        feature_extractor = WhisperFeatureExtractor()
        input_features = feature_extractor(input_speech, return_tensors="np").input_features

        logits = model(
            input_features,
            decoder_input_ids=np.array([model.config.decoder_start_token_id]),
            output_hidden_states=False,
            output_attentions=False,
            return_dict=False,
        )

        logits = logits[0] @ model.params["model"]["decoder"]["embed_tokens"]["embedding"].T

        # fmt: off
        EXPECTED_LOGITS = np.array(
            [
                -3.6784, -7.7211, -9.5070, -11.9286, -7.6489, -9.7026, -5.6188,
                -8.0104, -4.6238, -5.1833, -9.0485, -3.4079, -5.4874, -2.6935,
                -6.3479, -7.3398, -6.9558, -7.6867, -7.4748, -8.3463, -9.9781,
                -10.8389, -10.3105, -11.7201, -9.7261, -7.1590, -5.9272, -12.4509,
                -11.1146, -8.1918
            ]
        )
        # fmt: on
        self.assertTrue(np.allclose(logits[0, 0, :30], EXPECTED_LOGITS, atol=1e-4))

    def test_large_logits_librispeech(self):
        model = FlaxWhisperModel.from_pretrained("openai/whisper-large", from_pt=True)
        input_speech = self._load_datasamples(1)
        processor = WhisperProcessor.from_pretrained("openai/whisper-large")
        processed_inputs = processor(
            audio=input_speech, text="This part of the speech", add_special_tokens=False, return_tensors="np"
        )
        input_features = processed_inputs.input_features
        decoder_input_ids = processed_inputs.labels

        logits = model(
            input_features,
            decoder_input_ids=decoder_input_ids,
            output_hidden_states=False,
            output_attentions=False,
            return_dict=False,
        )

        logits = logits[0] @ model.params["model"]["decoder"]["embed_tokens"]["embedding"].T

        # fmt: off
        EXPECTED_LOGITS = np.array(
            [
                2.1382, 0.9381, 4.4671, 3.5589, 2.4022, 3.8576, -0.6521, 2.5472,
                1.8301, 1.9957, 2.3432, 1.4678, 0.5459, 2.2597, 1.5179, 2.5357,
                1.1624, 0.6194, 1.0757, 1.8259, 2.4076, 1.6601, 2.3503, 1.3376,
                1.9891, 1.8635, 3.8931, 5.3699, 4.4772, 3.9184
            ]
        )
        # fmt: on
        self.assertTrue(np.allclose(logits[0, 0, :30], EXPECTED_LOGITS, atol=1e-4))

    def test_tiny_en_generation(self):
        processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
        model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True)
        model.config.decoder_start_token_id = 50257

        input_speech = self._load_datasamples(1)
        input_features = processor.feature_extractor(
            raw_speech=input_speech, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="jax"
        ).input_features

        generated_ids = model.generate(input_features, num_beams=5, max_length=20).sequences
        transcript = processor.tokenizer.decode(generated_ids[0])

        EXPECTED_TRANSCRIPT = (
            "<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle"
            " classes and we are glad to"
        )
        self.assertEqual(transcript, EXPECTED_TRANSCRIPT)

    def test_tiny_generation(self):
        processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
        model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny", from_pt=True)

        input_speech = self._load_datasamples(1)
        input_features = processor.feature_extractor(
            raw_speech=input_speech, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="jax"
        ).input_features

        generated_ids = model.generate(input_features, num_beams=5, max_length=20).sequences
        transcript = processor.tokenizer.decode(generated_ids[0])

        EXPECTED_TRANSCRIPT = (
            "<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle"
            " classes and we are glad"
        )
        self.assertEqual(transcript, EXPECTED_TRANSCRIPT)

    def test_large_generation(self):
        processor = WhisperProcessor.from_pretrained("openai/whisper-large")
        model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-large", from_pt=True)

        input_speech = self._load_datasamples(1)
        input_features = processor.feature_extractor(
            raw_speech=input_speech, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="jax"
        ).input_features

        model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="en", task="transcribe")

        generated_ids = model.generate(input_features, num_beams=5, max_length=20).sequences
        transcript = processor.tokenizer.decode(generated_ids[0], skip_special_tokens=True)

        EXPECTED_TRANSCRIPT = " Mr. Quilter is the apostle of the middle classes and we are glad"
        self.assertEqual(transcript, EXPECTED_TRANSCRIPT)

    def test_large_generation_multilingual(self):
        processor = WhisperProcessor.from_pretrained("openai/whisper-large")
        model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-large", from_pt=True)

        ds = load_dataset("common_voice", "ja", split="test", streaming=True)
        ds = ds.cast_column("audio", datasets.Audio(sampling_rate=16_000))
        input_speech = next(iter(ds))["audio"]["array"]
        input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="np")

        model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="ja", task="transcribe")
        generated_ids = model.generate(input_features, do_sample=False, max_length=20).sequences
        transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

        EXPECTED_TRANSCRIPT = "木村さんに電話を貸してもらいました"
        self.assertEqual(transcript, EXPECTED_TRANSCRIPT)

        model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="en", task="transcribe")
        generated_ids = model.generate(
            input_features,
            do_sample=False,
            max_length=20,
        ).sequences
        transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

        EXPECTED_TRANSCRIPT = " Kimura-san called me."
        self.assertEqual(transcript, EXPECTED_TRANSCRIPT)

        model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="ja", task="translate")
        generated_ids = model.generate(input_features, do_sample=False, max_length=20).sequences
        transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

        EXPECTED_TRANSCRIPT = " I borrowed a phone from Kimura san"
        self.assertEqual(transcript, EXPECTED_TRANSCRIPT)

    def test_large_batched_generation(self):
        processor = WhisperProcessor.from_pretrained("openai/whisper-large")
        model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-large", from_pt=True)

        input_speech = self._load_datasamples(4)
        input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="np").input_features
        generated_ids = model.generate(input_features, max_length=20).sequences

        # fmt: off
        EXPECTED_LOGITS = np.array(
            [
                [50258, 50358, 50363, 2221, 13, 2326, 388, 391, 307, 264, 50244, 295, 264, 2808, 5359, 293, 321, 366, 5404, 281],
                [50258, 50358, 50363, 6966, 307, 2221, 13, 2326, 388, 391, 311, 9060, 1570, 1880, 813, 702, 1871, 13, 50257, 50257],
                [50258, 50358, 50363, 634, 5112, 505, 300, 412, 341, 42729, 3196, 295, 264, 1064, 11, 365, 5272, 293, 12904, 9256],
                [50258, 50358, 50363, 634, 575, 12525, 22618, 1968, 6144, 35617, 20084, 1756, 311, 589, 307, 534, 10281, 934, 439, 11]
            ]
        )
        # fmt: on

        self.assertTrue(np.allclose(generated_ids, EXPECTED_LOGITS))

        # fmt: off
        EXPECTED_TRANSCRIPT = [
            " Mr. Quilter is the apostle of the middle classes and we are glad to",
            " Nor is Mr. Quilter's manner less interesting than his matter.",
            " He tells us that at this festive season of the year, with Christmas and roast beef",
            " He has grave doubts whether Sir Frederick Layton's work is really Greek after all,",
        ]
        # fmt: on

        transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)
        self.assertListEqual(transcript, EXPECTED_TRANSCRIPT)

    def test_tiny_en_batched_generation(self):
        processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
        model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True)

        input_speech = self._load_datasamples(4)
        input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="np").input_features
        generated_ids = model.generate(input_features, max_length=20).sequences

        # fmt: off
        EXPECTED_LOGITS = np.array(
            [
                [50257, 50362, 1770, 13, 2264, 346, 353, 318, 262, 46329, 286, 262, 3504, 6097, 11, 290, 356, 389, 9675, 284],
                [50257, 50362, 5414, 318, 1770, 13, 2264, 346, 353, 338, 5642, 1342, 3499, 621, 465, 2300, 13, 50256, 50256, 50256],
                [50257, 50362, 679, 4952, 514, 326, 379, 428, 43856, 1622, 286, 262, 614, 11, 351, 6786, 290, 32595, 12023, 28236],
                [50257, 50362, 679, 468, 12296, 17188, 1771, 7361, 26113, 18881, 1122, 338, 670, 318, 1107, 8312, 706, 477, 290, 460]
            ]

        )
        # fmt: on

        self.assertTrue(np.allclose(generated_ids, EXPECTED_LOGITS))

        # fmt: off
        EXPECTED_TRANSCRIPT = [
            " Mr. Quilter is the apostle of the middle classes, and we are glad to",
            " Nor is Mr. Quilter's manner less interesting than his matter.",
            " He tells us that at this festive season of the year, with Christmas and roast beef looming",
            " He has grave doubts whether Sir Frederick Layton's work is really Greek after all and can",
        ]
        # fmt: on

        transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)
        self.assertListEqual(transcript, EXPECTED_TRANSCRIPT)

    @slow
    def test_tiny_timestamp_generation(self):
        processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
        model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")

        input_speech = np.concatenate(self._load_datasamples(4))
        input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="jax").input_features

        generate_fn = jax.jit(functools.partial(model.generate, max_length=448, return_timestamps=True))

        generated_ids = generate_fn(input_features)

        # fmt: off
        EXPECTED_OUTPUT = np.array([50258, 50259, 50359, 50364, 2221, 13, 2326, 388, 391, 307, 264, 50244, 295, 264, 2808, 5359, 11, 293, 321, 366, 5404, 281, 2928, 702, 14943, 13, 50692, 50692, 6966, 307, 2221, 13, 2326, 388, 391, 311, 9060, 1570, 1880, 813, 702, 1871, 13, 50926, 50926, 634, 5112, 505, 300, 412, 341, 42729, 3196, 295, 264, 1064, 11, 365, 5272, 293, 12904, 9256, 450, 10539, 51208, 51208, 949, 505, 11, 14138, 10117, 490, 3936, 293, 1080, 3542, 5160, 881, 26336, 281, 264, 1575, 13, 51552, 51552, 634, 575, 12525, 22618, 1968, 6144, 35617, 7354, 1292, 6, 589, 307, 534, 10281, 934, 439, 11, 293, 51836, 51836, 50257])
        # fmt: on

        self.assertTrue(np.allclose(generated_ids, EXPECTED_OUTPUT))

        EXPECTED_TRANSCRIPT = [
            {
                "text": (
                    " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel. Nor is"
                    " Mr. Quilter's manner less interesting than his matter. He tells us that at this festive season"
                    " of the year, with Christmas and roast beef looming before us, similarly drawn from eating and"
                    " its results occur most readily to the mind. He has grave doubts whether Sir Frederick Latins'"
                    " work is really Greek after all, and"
                ),
                "offsets": [
                    {
                        "text": (
                            " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."
                        ),
                        "timestamp": (0.0, 6.5600000000000005),
                    },
                    {
                        "text": " Nor is Mr. Quilter's manner less interesting than his matter.",
                        "timestamp": (6.5600000000000005, 11.24),
                    },
                    {
                        "text": (
                            " He tells us that at this festive season of the year, with Christmas and roast beef"
                            " looming"
                        ),
                        "timestamp": (11.24, 16.88),
                    },
                    {
                        "text": (
                            " before us, similarly drawn from eating and its results occur most readily to the mind."
                        ),
                        "timestamp": (16.88, 23.76),
                    },
                    {
                        "text": (
                            " He has grave doubts whether Sir Frederick Latins' work is really Greek after all, and"
                        ),
                        "timestamp": (23.76, 29.44),
                    },
                ],
            }
        ]

        transcript = processor.batch_decode(generated_ids, skip_special_tokens=True, output_offsets=True)
        self.assertEqual(transcript, EXPECTED_TRANSCRIPT)