Spaces:
Runtime error
Runtime error
File size: 31,917 Bytes
455a40f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import inspect
import tempfile
import unittest
import transformers
from transformers import WhisperConfig, is_flax_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, slow
from transformers.utils import cached_property
from transformers.utils.import_utils import is_datasets_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_datasets_available():
import datasets
from datasets import load_dataset
if is_flax_available():
import jax
import numpy as np
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import (
FLAX_MODEL_MAPPING,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
WhisperFeatureExtractor,
WhisperProcessor,
)
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
@require_flax
class FlaxWhisperModelTester:
config_cls = WhisperConfig
config_updates = {}
hidden_act = "gelu"
def __init__(
self,
parent,
batch_size=13,
seq_length=60,
is_training=True,
use_labels=False,
vocab_size=99,
d_model=16,
decoder_attention_heads=4,
decoder_ffn_dim=16,
decoder_layers=2,
encoder_attention_heads=4,
encoder_ffn_dim=16,
encoder_layers=2,
input_channels=1,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=70,
max_source_positions=30,
max_target_positions=40,
bos_token_id=98,
eos_token_id=98,
pad_token_id=0,
num_mel_bins=80,
decoder_start_token_id=85,
num_conv_layers=1,
suppress_tokens=None,
begin_suppress_tokens=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.d_model = d_model
self.hidden_size = d_model
self.num_hidden_layers = encoder_layers
self.num_attention_heads = encoder_attention_heads
self.decoder_attention_heads = decoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_seq_length = seq_length // 2
self.decoder_seq_length = 1
self.input_channels = input_channels
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.num_mel_bins = num_mel_bins
self.max_position_embeddings = max_position_embeddings
self.max_source_positions = max_source_positions
self.max_target_positions = max_target_positions
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.decoder_start_token_id = decoder_start_token_id
self.num_conv_layers = num_conv_layers
self.suppress_tokens = suppress_tokens
self.begin_suppress_tokens = begin_suppress_tokens
def prepare_config_and_inputs_for_common(self):
input_features = floats_tensor([self.batch_size, self.num_mel_bins, self.seq_length], self.vocab_size)
decoder_input_ids = np.array(self.batch_size * [[self.decoder_start_token_id]])
config = WhisperConfig(
vocab_size=self.vocab_size,
num_mel_bins=self.num_mel_bins,
decoder_start_token_id=self.decoder_start_token_id,
is_encoder_decoder=True,
activation_function=self.hidden_act,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_source_positions=self.max_source_positions,
max_target_positions=self.max_target_positions,
pad_token_id=self.pad_token_id,
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
tie_word_embeddings=True,
d_model=self.d_model,
decoder_attention_heads=self.decoder_attention_heads,
decoder_ffn_dim=self.decoder_ffn_dim,
decoder_layers=self.decoder_layers,
encoder_attention_heads=self.encoder_attention_heads,
encoder_ffn_dim=self.encoder_ffn_dim,
encoder_layers=self.encoder_layers,
suppress_tokens=self.suppress_tokens,
begin_suppress_tokens=self.begin_suppress_tokens,
)
inputs_dict = prepare_whisper_inputs_dict(config, input_features, decoder_input_ids)
return config, inputs_dict
def prepare_whisper_inputs_dict(
config,
input_ids,
decoder_input_ids,
attention_mask=None,
decoder_attention_mask=None,
):
if decoder_attention_mask is None:
decoder_attention_mask = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape, dtype=np.int8),
np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id).astype(np.int8),
],
axis=-1,
)
return {
"input_features": input_ids,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
}
def partialclass(cls, *args, **kwargs):
class NewCls(cls):
__init__ = functools.partialmethod(cls.__init__, *args, **kwargs)
return NewCls
def make_partial_class(full_class, *args, **kwargs):
partial_class = partialclass(full_class, *args, **kwargs)
partial_class.__name__ = full_class.__name__
partial_class.__module__ = full_class.__module__
return partial_class
@require_flax
class FlaxWhisperModelTest(FlaxModelTesterMixin, unittest.TestCase):
all_model_classes = (FlaxWhisperForConditionalGeneration, FlaxWhisperModel) if is_flax_available() else ()
all_generative_model_classes = (FlaxWhisperForConditionalGeneration,) if is_flax_available() else ()
is_encoder_decoder = True
test_pruning = False
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = FlaxWhisperModelTester(self)
_, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
self.init_shape = (1,) + inputs_dict["input_features"].shape[1:]
self.all_model_classes = (
make_partial_class(model_class, input_shape=self.init_shape) for model_class in self.all_model_classes
)
self.config_tester = ConfigTester(self, config_class=WhisperConfig)
def test_config(self):
self.config_tester.run_common_tests()
# overwrite because of `input_features`
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.__call__)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["input_features", "decoder_input_ids"]
self.assertListEqual(arg_names[:2], expected_arg_names)
# overwrite because of `input_features`
def test_jit_compilation(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config)
@jax.jit
def model_jitted(input_features, decoder_input_ids, **kwargs):
return model(input_features=input_features, decoder_input_ids=decoder_input_ids, **kwargs)
with self.subTest("JIT Enabled"):
jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
outputs = model_jitted(**prepared_inputs_dict).to_tuple()
self.assertEqual(len(outputs), len(jitted_outputs))
for jitted_output, output in zip(jitted_outputs, outputs):
self.assertEqual(jitted_output.shape, output.shape)
# overwrite because of `input_features`
@is_pt_flax_cross_test
def test_save_load_bf16_to_base_pt(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
base_class = make_partial_class(FLAX_MODEL_MAPPING[config.__class__], input_shape=self.init_shape)
for model_class in self.all_model_classes:
if model_class.__name__ == base_class.__name__:
continue
model = model_class(config)
model.params = model.to_bf16(model.params)
base_params_from_head = flatten_dict(unfreeze(model.params[model.base_model_prefix]))
# convert Flax model to PyTorch model
pt_model_class = getattr(transformers, model_class.__name__[4:]) # Skip the "Flax" at the beginning
pt_model = pt_model_class(config).eval()
pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)
# check that all base model weights are loaded correctly
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(tmpdirname)
base_model = base_class.from_pretrained(tmpdirname, from_pt=True)
base_params = flatten_dict(unfreeze(base_model.params))
for key in base_params_from_head.keys():
max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
# overwrite because of `input_features`
@is_pt_flax_cross_test
def test_save_load_from_base_pt(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
base_class = make_partial_class(FLAX_MODEL_MAPPING[config.__class__], input_shape=self.init_shape)
for model_class in self.all_model_classes:
if model_class.__name__ == base_class.__name__:
continue
model = base_class(config)
base_params = flatten_dict(unfreeze(model.params))
# convert Flax model to PyTorch model
pt_model_class = getattr(transformers, base_class.__name__[4:]) # Skip the "Flax" at the beginning
pt_model = pt_model_class(config).eval()
pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)
# check that all base model weights are loaded correctly
with tempfile.TemporaryDirectory() as tmpdirname:
# save pt model
pt_model.save_pretrained(tmpdirname)
head_model = model_class.from_pretrained(tmpdirname, from_pt=True)
base_param_from_head = flatten_dict(unfreeze(head_model.params[head_model.base_model_prefix]))
for key in base_param_from_head.keys():
max_diff = (base_params[key] - base_param_from_head[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
# overwrite because of `input_features`
@is_pt_flax_cross_test
def test_save_load_to_base_pt(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
base_class = make_partial_class(FLAX_MODEL_MAPPING[config.__class__], input_shape=self.init_shape)
for model_class in self.all_model_classes:
if model_class.__name__ == base_class.__name__:
continue
model = model_class(config)
base_params_from_head = flatten_dict(unfreeze(model.params[model.base_model_prefix]))
# convert Flax model to PyTorch model
pt_model_class = getattr(transformers, model_class.__name__[4:]) # Skip the "Flax" at the beginning
pt_model = pt_model_class(config).eval()
pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)
# check that all base model weights are loaded correctly
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(tmpdirname)
base_model = base_class.from_pretrained(tmpdirname, from_pt=True)
base_params = flatten_dict(unfreeze(base_model.params))
for key in base_params_from_head.keys():
max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
# overwrite because of `input_features`
def test_save_load_from_base(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
base_class = make_partial_class(FLAX_MODEL_MAPPING[config.__class__], input_shape=self.init_shape)
for model_class in self.all_model_classes:
if model_class.__name__ == base_class.__name__:
continue
model = base_class(config)
base_params = flatten_dict(unfreeze(model.params))
# check that all base model weights are loaded correctly
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
head_model = model_class.from_pretrained(tmpdirname)
base_param_from_head = flatten_dict(unfreeze(head_model.params[head_model.base_model_prefix]))
for key in base_param_from_head.keys():
max_diff = (base_params[key] - base_param_from_head[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
# overwrite because of `input_features`
def test_save_load_to_base(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
base_class = make_partial_class(FLAX_MODEL_MAPPING[config.__class__], input_shape=self.init_shape)
for model_class in self.all_model_classes:
if model_class.__name__ == base_class.__name__:
continue
model = model_class(config)
base_params_from_head = flatten_dict(unfreeze(model.params[model.base_model_prefix]))
# check that all base model weights are loaded correctly
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
base_model = base_class.from_pretrained(tmpdirname)
base_params = flatten_dict(unfreeze(base_model.params))
for key in base_params_from_head.keys():
max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
@slow
@require_flax
class FlaxWhisperModelIntegrationTest(unittest.TestCase):
@cached_property
def default_processor(self):
return WhisperProcessor.from_pretrained("openai/whisper-base")
def _load_datasamples(self, num_samples):
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def test_tiny_logits_librispeech(self):
model = FlaxWhisperModel.from_pretrained("openai/whisper-tiny", from_pt=True)
input_speech = self._load_datasamples(1)
feature_extractor = WhisperFeatureExtractor()
input_features = feature_extractor(input_speech, return_tensors="np").input_features
logits = model(
input_features,
decoder_input_ids=np.array([[50258, 50259, 50359]]),
output_hidden_states=False,
output_attentions=False,
return_dict=False,
)
# fmt: off
EXPECTED_LOGITS = np.array(
[
2.9892, -6.7607, 5.7348, 3.6096, 0.2152, -5.7321, 4.8855, -1.6407,
0.2823, -1.5718, 10.4269, 3.4427, 0.0219, -8.0612, 3.4784, 8.4246,
4.0575, -2.2864, 11.1084, 0.9963, 0.9884, -8.5154, -3.5469, -9.3713,
0.9786, 3.5435, 7.4850, -5.2579, -1.4366, 10.4841
]
)
# fmt: on
self.assertTrue(np.allclose(logits[0][0, 0, :30], EXPECTED_LOGITS, atol=1e-4))
def test_small_en_logits_librispeech(self):
model = FlaxWhisperModel.from_pretrained("openai/whisper-small.en", from_pt=True)
input_speech = self._load_datasamples(1)
feature_extractor = WhisperFeatureExtractor()
input_features = feature_extractor(input_speech, return_tensors="np").input_features
logits = model(
input_features,
decoder_input_ids=np.array([model.config.decoder_start_token_id]),
output_hidden_states=False,
output_attentions=False,
return_dict=False,
)
logits = logits[0] @ model.params["model"]["decoder"]["embed_tokens"]["embedding"].T
# fmt: off
EXPECTED_LOGITS = np.array(
[
-3.6784, -7.7211, -9.5070, -11.9286, -7.6489, -9.7026, -5.6188,
-8.0104, -4.6238, -5.1833, -9.0485, -3.4079, -5.4874, -2.6935,
-6.3479, -7.3398, -6.9558, -7.6867, -7.4748, -8.3463, -9.9781,
-10.8389, -10.3105, -11.7201, -9.7261, -7.1590, -5.9272, -12.4509,
-11.1146, -8.1918
]
)
# fmt: on
self.assertTrue(np.allclose(logits[0, 0, :30], EXPECTED_LOGITS, atol=1e-4))
def test_large_logits_librispeech(self):
model = FlaxWhisperModel.from_pretrained("openai/whisper-large", from_pt=True)
input_speech = self._load_datasamples(1)
processor = WhisperProcessor.from_pretrained("openai/whisper-large")
processed_inputs = processor(
audio=input_speech, text="This part of the speech", add_special_tokens=False, return_tensors="np"
)
input_features = processed_inputs.input_features
decoder_input_ids = processed_inputs.labels
logits = model(
input_features,
decoder_input_ids=decoder_input_ids,
output_hidden_states=False,
output_attentions=False,
return_dict=False,
)
logits = logits[0] @ model.params["model"]["decoder"]["embed_tokens"]["embedding"].T
# fmt: off
EXPECTED_LOGITS = np.array(
[
2.1382, 0.9381, 4.4671, 3.5589, 2.4022, 3.8576, -0.6521, 2.5472,
1.8301, 1.9957, 2.3432, 1.4678, 0.5459, 2.2597, 1.5179, 2.5357,
1.1624, 0.6194, 1.0757, 1.8259, 2.4076, 1.6601, 2.3503, 1.3376,
1.9891, 1.8635, 3.8931, 5.3699, 4.4772, 3.9184
]
)
# fmt: on
self.assertTrue(np.allclose(logits[0, 0, :30], EXPECTED_LOGITS, atol=1e-4))
def test_tiny_en_generation(self):
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True)
model.config.decoder_start_token_id = 50257
input_speech = self._load_datasamples(1)
input_features = processor.feature_extractor(
raw_speech=input_speech, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="jax"
).input_features
generated_ids = model.generate(input_features, num_beams=5, max_length=20).sequences
transcript = processor.tokenizer.decode(generated_ids[0])
EXPECTED_TRANSCRIPT = (
"<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle"
" classes and we are glad to"
)
self.assertEqual(transcript, EXPECTED_TRANSCRIPT)
def test_tiny_generation(self):
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny", from_pt=True)
input_speech = self._load_datasamples(1)
input_features = processor.feature_extractor(
raw_speech=input_speech, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="jax"
).input_features
generated_ids = model.generate(input_features, num_beams=5, max_length=20).sequences
transcript = processor.tokenizer.decode(generated_ids[0])
EXPECTED_TRANSCRIPT = (
"<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle"
" classes and we are glad"
)
self.assertEqual(transcript, EXPECTED_TRANSCRIPT)
def test_large_generation(self):
processor = WhisperProcessor.from_pretrained("openai/whisper-large")
model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-large", from_pt=True)
input_speech = self._load_datasamples(1)
input_features = processor.feature_extractor(
raw_speech=input_speech, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="jax"
).input_features
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="en", task="transcribe")
generated_ids = model.generate(input_features, num_beams=5, max_length=20).sequences
transcript = processor.tokenizer.decode(generated_ids[0], skip_special_tokens=True)
EXPECTED_TRANSCRIPT = " Mr. Quilter is the apostle of the middle classes and we are glad"
self.assertEqual(transcript, EXPECTED_TRANSCRIPT)
def test_large_generation_multilingual(self):
processor = WhisperProcessor.from_pretrained("openai/whisper-large")
model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-large", from_pt=True)
ds = load_dataset("common_voice", "ja", split="test", streaming=True)
ds = ds.cast_column("audio", datasets.Audio(sampling_rate=16_000))
input_speech = next(iter(ds))["audio"]["array"]
input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="np")
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="ja", task="transcribe")
generated_ids = model.generate(input_features, do_sample=False, max_length=20).sequences
transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
EXPECTED_TRANSCRIPT = "木村さんに電話を貸してもらいました"
self.assertEqual(transcript, EXPECTED_TRANSCRIPT)
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="en", task="transcribe")
generated_ids = model.generate(
input_features,
do_sample=False,
max_length=20,
).sequences
transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
EXPECTED_TRANSCRIPT = " Kimura-san called me."
self.assertEqual(transcript, EXPECTED_TRANSCRIPT)
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="ja", task="translate")
generated_ids = model.generate(input_features, do_sample=False, max_length=20).sequences
transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
EXPECTED_TRANSCRIPT = " I borrowed a phone from Kimura san"
self.assertEqual(transcript, EXPECTED_TRANSCRIPT)
def test_large_batched_generation(self):
processor = WhisperProcessor.from_pretrained("openai/whisper-large")
model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-large", from_pt=True)
input_speech = self._load_datasamples(4)
input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="np").input_features
generated_ids = model.generate(input_features, max_length=20).sequences
# fmt: off
EXPECTED_LOGITS = np.array(
[
[50258, 50358, 50363, 2221, 13, 2326, 388, 391, 307, 264, 50244, 295, 264, 2808, 5359, 293, 321, 366, 5404, 281],
[50258, 50358, 50363, 6966, 307, 2221, 13, 2326, 388, 391, 311, 9060, 1570, 1880, 813, 702, 1871, 13, 50257, 50257],
[50258, 50358, 50363, 634, 5112, 505, 300, 412, 341, 42729, 3196, 295, 264, 1064, 11, 365, 5272, 293, 12904, 9256],
[50258, 50358, 50363, 634, 575, 12525, 22618, 1968, 6144, 35617, 20084, 1756, 311, 589, 307, 534, 10281, 934, 439, 11]
]
)
# fmt: on
self.assertTrue(np.allclose(generated_ids, EXPECTED_LOGITS))
# fmt: off
EXPECTED_TRANSCRIPT = [
" Mr. Quilter is the apostle of the middle classes and we are glad to",
" Nor is Mr. Quilter's manner less interesting than his matter.",
" He tells us that at this festive season of the year, with Christmas and roast beef",
" He has grave doubts whether Sir Frederick Layton's work is really Greek after all,",
]
# fmt: on
transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)
self.assertListEqual(transcript, EXPECTED_TRANSCRIPT)
def test_tiny_en_batched_generation(self):
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True)
input_speech = self._load_datasamples(4)
input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="np").input_features
generated_ids = model.generate(input_features, max_length=20).sequences
# fmt: off
EXPECTED_LOGITS = np.array(
[
[50257, 50362, 1770, 13, 2264, 346, 353, 318, 262, 46329, 286, 262, 3504, 6097, 11, 290, 356, 389, 9675, 284],
[50257, 50362, 5414, 318, 1770, 13, 2264, 346, 353, 338, 5642, 1342, 3499, 621, 465, 2300, 13, 50256, 50256, 50256],
[50257, 50362, 679, 4952, 514, 326, 379, 428, 43856, 1622, 286, 262, 614, 11, 351, 6786, 290, 32595, 12023, 28236],
[50257, 50362, 679, 468, 12296, 17188, 1771, 7361, 26113, 18881, 1122, 338, 670, 318, 1107, 8312, 706, 477, 290, 460]
]
)
# fmt: on
self.assertTrue(np.allclose(generated_ids, EXPECTED_LOGITS))
# fmt: off
EXPECTED_TRANSCRIPT = [
" Mr. Quilter is the apostle of the middle classes, and we are glad to",
" Nor is Mr. Quilter's manner less interesting than his matter.",
" He tells us that at this festive season of the year, with Christmas and roast beef looming",
" He has grave doubts whether Sir Frederick Layton's work is really Greek after all and can",
]
# fmt: on
transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)
self.assertListEqual(transcript, EXPECTED_TRANSCRIPT)
@slow
def test_tiny_timestamp_generation(self):
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
input_speech = np.concatenate(self._load_datasamples(4))
input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="jax").input_features
generate_fn = jax.jit(functools.partial(model.generate, max_length=448, return_timestamps=True))
generated_ids = generate_fn(input_features)
# fmt: off
EXPECTED_OUTPUT = np.array([50258, 50259, 50359, 50364, 2221, 13, 2326, 388, 391, 307, 264, 50244, 295, 264, 2808, 5359, 11, 293, 321, 366, 5404, 281, 2928, 702, 14943, 13, 50692, 50692, 6966, 307, 2221, 13, 2326, 388, 391, 311, 9060, 1570, 1880, 813, 702, 1871, 13, 50926, 50926, 634, 5112, 505, 300, 412, 341, 42729, 3196, 295, 264, 1064, 11, 365, 5272, 293, 12904, 9256, 450, 10539, 51208, 51208, 949, 505, 11, 14138, 10117, 490, 3936, 293, 1080, 3542, 5160, 881, 26336, 281, 264, 1575, 13, 51552, 51552, 634, 575, 12525, 22618, 1968, 6144, 35617, 7354, 1292, 6, 589, 307, 534, 10281, 934, 439, 11, 293, 51836, 51836, 50257])
# fmt: on
self.assertTrue(np.allclose(generated_ids, EXPECTED_OUTPUT))
EXPECTED_TRANSCRIPT = [
{
"text": (
" Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel. Nor is"
" Mr. Quilter's manner less interesting than his matter. He tells us that at this festive season"
" of the year, with Christmas and roast beef looming before us, similarly drawn from eating and"
" its results occur most readily to the mind. He has grave doubts whether Sir Frederick Latins'"
" work is really Greek after all, and"
),
"offsets": [
{
"text": (
" Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."
),
"timestamp": (0.0, 6.5600000000000005),
},
{
"text": " Nor is Mr. Quilter's manner less interesting than his matter.",
"timestamp": (6.5600000000000005, 11.24),
},
{
"text": (
" He tells us that at this festive season of the year, with Christmas and roast beef"
" looming"
),
"timestamp": (11.24, 16.88),
},
{
"text": (
" before us, similarly drawn from eating and its results occur most readily to the mind."
),
"timestamp": (16.88, 23.76),
},
{
"text": (
" He has grave doubts whether Sir Frederick Latins' work is really Greek after all, and"
),
"timestamp": (23.76, 29.44),
},
],
}
]
transcript = processor.batch_decode(generated_ids, skip_special_tokens=True, output_offsets=True)
self.assertEqual(transcript, EXPECTED_TRANSCRIPT)
|