Spaces:
Runtime error
Runtime error
File size: 26,298 Bytes
455a40f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import math
import multiprocessing
import traceback
import unittest
import numpy as np
from datasets import load_dataset
from transformers import Wav2Vec2Config, is_flax_available
from transformers.testing_utils import (
CaptureLogger,
is_flaky,
is_librosa_available,
is_pt_flax_cross_test,
is_pyctcdecode_available,
require_flax,
require_librosa,
require_pyctcdecode,
require_soundfile,
run_test_in_subprocess,
slow,
)
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
import optax
from flax.traverse_util import flatten_dict
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_flax_wav2vec2 import (
FlaxWav2Vec2ForCTC,
FlaxWav2Vec2ForPreTraining,
FlaxWav2Vec2GumbelVectorQuantizer,
FlaxWav2Vec2Model,
_compute_mask_indices,
_sample_negative_indices,
)
if is_pyctcdecode_available():
import pyctcdecode.decoder
from transformers import Wav2Vec2ProcessorWithLM
from transformers.models.wav2vec2_with_lm import processing_wav2vec2_with_lm
if is_librosa_available():
import librosa
def _test_wav2vec2_with_lm_invalid_pool(in_queue, out_queue, timeout):
error = None
try:
_ = in_queue.get(timeout=timeout)
ds = load_dataset("common_voice", "es", split="test", streaming=True)
sample = next(iter(ds))
resampled_audio = librosa.resample(sample["audio"]["array"], 48_000, 16_000)
model = FlaxWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
input_values = processor(resampled_audio, return_tensors="np").input_values
logits = model(input_values).logits
# use a spawn pool, which should trigger a warning if different than fork
with CaptureLogger(pyctcdecode.decoder.logger) as cl, multiprocessing.get_context("spawn").Pool(1) as pool:
transcription = processor.batch_decode(np.array(logits), pool).text
unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out)
unittest.TestCase().assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")
# force batch_decode to internally create a spawn pool, which should trigger a warning if different than fork
multiprocessing.set_start_method("spawn", force=True)
with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl:
transcription = processor.batch_decode(np.array(logits)).text
unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out)
unittest.TestCase().assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")
except Exception:
error = f"{traceback.format_exc()}"
results = {"error": error}
out_queue.put(results, timeout=timeout)
out_queue.join()
class FlaxWav2Vec2ModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=1024, # speech is longer
is_training=False,
hidden_size=24,
feat_extract_norm="layer",
feat_extract_dropout=0.0,
feat_extract_activation="gelu",
conv_dim=(32, 32, 32),
conv_stride=(4, 4, 4),
conv_kernel=(8, 8, 8),
conv_bias=False,
num_conv_pos_embeddings=16,
num_conv_pos_embedding_groups=2,
num_hidden_layers=4,
num_attention_heads=2,
hidden_dropout_prob=0.1, # this is most likely not correctly set yet
intermediate_size=20,
layer_norm_eps=1e-5,
hidden_act="gelu",
initializer_range=0.02,
vocab_size=32,
do_stable_layer_norm=True,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.hidden_size = hidden_size
self.feat_extract_norm = feat_extract_norm
self.feat_extract_dropout = feat_extract_dropout
self.feat_extract_activation = feat_extract_activation
self.conv_dim = conv_dim
self.conv_stride = conv_stride
self.conv_kernel = conv_kernel
self.conv_bias = conv_bias
self.num_conv_pos_embeddings = num_conv_pos_embeddings
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_dropout_prob = hidden_dropout_prob
self.intermediate_size = intermediate_size
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.vocab_size = vocab_size
self.do_stable_layer_norm = do_stable_layer_norm
self.scope = scope
output_seq_length = self.seq_length
for kernel, stride in zip(self.conv_kernel, self.conv_stride):
output_seq_length = (output_seq_length - (kernel - 1)) / stride
self.output_seq_length = int(math.ceil(output_seq_length))
self.encoder_seq_length = self.output_seq_length
def prepare_config_and_inputs(self):
input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0)
attention_mask = random_attention_mask([self.batch_size, self.seq_length])
config = Wav2Vec2Config(
do_stable_layer_norm=self.do_stable_layer_norm,
hidden_size=self.hidden_size,
feat_extract_norm=self.feat_extract_norm,
feat_extract_dropout=self.feat_extract_dropout,
feat_extract_activation=self.feat_extract_activation,
conv_dim=self.conv_dim,
conv_stride=self.conv_stride,
conv_kernel=self.conv_kernel,
conv_bias=self.conv_bias,
num_conv_pos_embeddings=self.num_conv_pos_embeddings,
num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
hidden_dropout_prob=self.hidden_dropout_prob,
intermediate_size=self.intermediate_size,
layer_norm_eps=self.layer_norm_eps,
hidden_act=self.hidden_act,
initializer_range=self.initializer_range,
vocab_size=self.vocab_size,
)
return config, input_values, attention_mask
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_values, attention_mask = config_and_inputs
inputs_dict = {"input_values": input_values, "attention_mask": attention_mask}
return config, inputs_dict
@require_flax
class FlaxWav2Vec2ModelTest(FlaxModelTesterMixin, unittest.TestCase):
all_model_classes = (
(FlaxWav2Vec2Model, FlaxWav2Vec2ForCTC, FlaxWav2Vec2ForPreTraining) if is_flax_available() else ()
)
def setUp(self):
self.model_tester = FlaxWav2Vec2ModelTester(self)
def test_train(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
input_values = inputs_dict["input_values"]
attention_mask = inputs_dict["attention_mask"]
model = FlaxWav2Vec2ForPreTraining(config)
features_shape = (
input_values.shape[0],
model._get_feat_extract_output_lengths(np.array(input_values.shape[1])),
)
batch_size, sequence_length = features_shape[:2]
mask_prob = 0.5
mask_length = 4
mask_time_indices = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
dropout_rng, gumbel_rng = jax.random.split(jax.random.PRNGKey(0))
output = model(
input_values,
attention_mask=attention_mask,
mask_time_indices=mask_time_indices,
train=True,
dropout_rng=dropout_rng,
gumbel_rng=gumbel_rng,
)[0]
self.assertTrue(output.shape == (batch_size, sequence_length, model.config.proj_codevector_dim))
# overwrite because of `input_values`
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.__call__)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["input_values", "attention_mask"]
self.assertListEqual(arg_names[:2], expected_arg_names)
# overwrite because of `input_values`
def test_jit_compilation(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config)
@jax.jit
def model_jitted(input_values, attention_mask=None, **kwargs):
return model(input_values=input_values, attention_mask=attention_mask, **kwargs)
with self.subTest("JIT Enabled"):
jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
outputs = model_jitted(**prepared_inputs_dict).to_tuple()
self.assertEqual(len(outputs), len(jitted_outputs))
for jitted_output, output in zip(jitted_outputs, outputs):
self.assertEqual(jitted_output.shape, output.shape)
def test_freeze_feature_encoder(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
input_values = inputs_dict["input_values"]
attention_mask = inputs_dict["attention_mask"]
model = FlaxWav2Vec2ForPreTraining(config)
params = model.params
# dummy loss function
def compute_loss(
params, input_values, attention_mask, freeze_feature_encoder: bool = False, epsilon: float = 1e-8
):
outputs = model(
input_values,
attention_mask=attention_mask,
freeze_feature_encoder=freeze_feature_encoder,
params=params,
)
# compute cosine similarity of projected and projected_quantized states
cosine_sim = optax.cosine_similarity(
outputs.projected_states, outputs.projected_quantized_states, epsilon=epsilon
)
loss = cosine_sim.sum()
return loss, outputs.to_tuple()
# transform the loss function to get the gradients
grad_fn = jax.value_and_grad(compute_loss, has_aux=True)
# compute loss, outputs and gradients for unfrozen model
(loss, outputs), grads = grad_fn(params, input_values, attention_mask, freeze_feature_encoder=False)
# compare to loss, outputs and gradients for frozen model
(loss_frozen, outputs_frozen), grads_frozen = grad_fn(
params, input_values, attention_mask, freeze_feature_encoder=True
)
# ensure that the outputs and losses remain precisely equal
for output, output_frozen in zip(outputs, outputs_frozen):
self.assertTrue((output == output_frozen).all())
self.assertEqual(loss, loss_frozen)
grads = flatten_dict(grads)
grads_frozen = flatten_dict(grads_frozen)
# ensure that the dicts of gradients contain the same keys
self.assertEqual(grads.keys(), grads_frozen.keys())
# ensure that the gradients of the feature extractor layers are precisely zero when frozen and contain non-zero entries when unfrozen
feature_extractor_grads = tuple(grads[k] for k in grads if "feature_extractor" in k)
feature_extractor_grads_frozen = tuple(grads_frozen[k] for k in grads_frozen if "feature_extractor" in k)
for feature_extractor_grad, feature_extractor_grad_frozen in zip(
feature_extractor_grads, feature_extractor_grads_frozen
):
self.assertTrue((feature_extractor_grad_frozen == 0.0).all())
self.assertTrue((feature_extractor_grad > 0.0).any())
# ensure that the gradients of all unfrozen layers remain equal, i.e. all layers excluding the frozen 'feature_extractor'
grads = tuple(grads[k] for k in grads if "feature_extractor" not in k)
grads_frozen = tuple(grads_frozen[k] for k in grads_frozen if "feature_extractor" not in k)
for grad, grad_frozen in zip(grads, grads_frozen):
self.assertTrue((grad == grad_frozen).all())
@slow
def test_model_from_pretrained(self):
for model_class_name in self.all_model_classes:
model = model_class_name.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", from_pt=True)
outputs = model(np.ones((1, 1024), dtype="f4"))
self.assertIsNotNone(outputs)
@is_pt_flax_cross_test
@is_flaky()
def test_equivalence_pt_to_flax(self):
super().test_equivalence_pt_to_flax()
@require_flax
class FlaxWav2Vec2UtilsTest(unittest.TestCase):
def test_compute_mask_indices(self):
batch_size = 4
sequence_length = 60
mask_prob = 0.5
mask_length = 1
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)])
def test_compute_mask_indices_overlap(self):
batch_size = 4
sequence_length = 80
mask_prob = 0.5
mask_length = 4
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
# because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal
for batch_sum in mask.sum(axis=-1):
self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)
def test_compute_mask_indices_attn_mask_overlap(self):
batch_size = 4
sequence_length = 80
mask_prob = 0.5
mask_length = 4
attention_mask = np.ones((batch_size, sequence_length), dtype=np.int32)
attention_mask[:2, sequence_length // 2 :] = 0
mask = _compute_mask_indices(
(batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask
)
for batch_sum in mask.sum(axis=-1):
self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)
self.assertTrue(mask[:2, sequence_length // 2 :].sum() == 0)
def test_compute_perplexity(self):
probs = np.arange(100).reshape(2, 5, 10) / 100
ppl = FlaxWav2Vec2GumbelVectorQuantizer._compute_perplexity(probs)
self.assertTrue(abs(ppl.item() - 141.4291) < 1e-3)
# mask half of the input
mask = np.ones((2,), dtype=bool)
mask[0] = 0
ppl = FlaxWav2Vec2GumbelVectorQuantizer._compute_perplexity(probs, mask)
self.assertTrue(abs(ppl.item() - 58.6757) < 1e-3)
def test_sample_negatives(self):
batch_size = 2
sequence_length = 10
hidden_size = 4
num_negatives = 3
features = (np.arange(sequence_length * hidden_size) // hidden_size).reshape(
sequence_length, hidden_size
) # each value in vector consits of same value
features = np.broadcast_to(features[None, :], (batch_size, sequence_length, hidden_size))
negative_indices = _sample_negative_indices(features.shape, num_negatives)
features = features.reshape(-1, hidden_size) # BTC => (BxT)C
# take negative vectors from sampled indices
sampled_negatives = features[negative_indices.reshape(-1)]
negatives = sampled_negatives.reshape(batch_size, sequence_length, num_negatives, hidden_size).transpose(
2, 0, 1, 3
)
self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))
# make sure no negatively sampled vector is actually a positive one
for negative in negatives:
self.assertTrue(((negative - features.reshape(negative.shape)) == 0).sum() == 0.0)
# make sure that full vectors are sampled and not values of vectors
# => this means that `unique()` yields a single value for `hidden_size` dim
self.assertEqual(np.unique(negatives, axis=-1).shape, (num_negatives, batch_size, sequence_length, 1))
def test_sample_negatives_with_attn_mask(self):
batch_size = 2
sequence_length = 10
hidden_size = 4
num_negatives = 3
features = (np.arange(sequence_length * hidden_size) // hidden_size).reshape(
sequence_length, hidden_size
) # each value in vector consits of same value
# second half of last input tensor is padded
attention_mask = np.ones((batch_size, sequence_length), dtype=np.int8)
attention_mask[-1, sequence_length // 2 :] = 0
forbidden_indices = (
np.arange(sequence_length // 2, sequence_length, dtype=np.int32) + (batch_size - 1) * sequence_length
).tolist()
features = np.broadcast_to(features[None, :], (batch_size, sequence_length, hidden_size))
negative_indices = _sample_negative_indices(features.shape, num_negatives, attention_mask=attention_mask)
# make sure that no padding tokens are sampled
self.assertTrue(all([idx not in negative_indices for idx in forbidden_indices]))
features = features.reshape(-1, hidden_size) # BTC => (BxT)C
# take negative vectors from sampled indices
sampled_negatives = features[negative_indices.reshape(-1)]
negatives = sampled_negatives.reshape(batch_size, sequence_length, num_negatives, hidden_size).transpose(
2, 0, 1, 3
)
self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))
# make sure no negatively sampled vector is actually a positive one
for negative in negatives:
self.assertTrue(((negative - features.reshape(negative.shape)) == 0).sum() == 0.0)
# make sure that full vectors are sampled and not just slices of vectors
# => this means that `unique()` yields a single value for `hidden_size` dim
self.assertEqual(np.unique(negatives, axis=-1).shape, (num_negatives, batch_size, sequence_length, 1))
@require_flax
@require_soundfile
@slow
class FlaxWav2Vec2ModelIntegrationTest(unittest.TestCase):
def _load_datasamples(self, num_samples):
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").filter(
lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]
)[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def test_inference_ctc_robust_batched(self):
model = FlaxWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", from_pt=True)
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", do_lower_case=True)
input_speech = self._load_datasamples(4)
inputs = processor(input_speech, return_tensors="np", padding=True)
input_values = inputs.input_values
attention_mask = inputs.attention_mask
logits = model(input_values, attention_mask=attention_mask).logits
predicted_ids = jnp.argmax(logits, axis=-1)
predicted_trans = processor.batch_decode(predicted_ids)
EXPECTED_TRANSCRIPTIONS = [
"a man said to the universe sir i exist",
"sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore",
"the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around"
" him with the thousands of spectators were trivialities not worth thinking about",
"his instant panic was followed by a small sharp blow high on his chest",
]
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
def test_inference_pretrained(self):
model = FlaxWav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-large-lv60", from_pt=True)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
"facebook/wav2vec2-large-lv60", return_attention_mask=True
)
input_speech = self._load_datasamples(2)
inputs_dict = feature_extractor(input_speech, return_tensors="np", padding=True)
features_shape = (
inputs_dict["input_values"].shape[0],
model._get_feat_extract_output_lengths(np.array(inputs_dict["input_values"].shape[1])),
)
mask_time_indices = _compute_mask_indices(
features_shape,
model.config.mask_time_prob,
model.config.mask_time_length,
min_masks=2,
)
outputs = model(
inputs_dict.input_values,
attention_mask=inputs_dict.attention_mask,
mask_time_indices=mask_time_indices,
)
# compute cosine similarity
cosine_sim = optax.cosine_similarity(
outputs.projected_states, outputs.projected_quantized_states, epsilon=1e-8
)
# retrieve cosine sim of masked features
cosine_sim_masked = cosine_sim[mask_time_indices]
# ... now compare to randomly initialized model
config = Wav2Vec2Config.from_pretrained("facebook/wav2vec2-large-lv60")
model_rand = FlaxWav2Vec2ForPreTraining(config)
outputs_rand = model_rand(
inputs_dict.input_values,
attention_mask=inputs_dict.attention_mask,
mask_time_indices=mask_time_indices,
)
# compute cosine similarity
cosine_sim_rand = optax.cosine_similarity(
outputs_rand.projected_states, outputs_rand.projected_quantized_states
)
# retrieve cosine sim of masked features
cosine_sim_masked_rand = cosine_sim_rand[mask_time_indices]
# a pretrained wav2vec2 model has learned to predict the quantized latent states
# => the cosine similarity between quantized states and predicted states > 0.5
# a random wav2vec2 model has not learned to predict the quantized latent states
# => the cosine similarity between quantized states and predicted states is very likely < 0.1
self.assertTrue(cosine_sim_masked.mean().item() - 5 * cosine_sim_masked_rand.mean().item() > 0)
@require_pyctcdecode
@require_librosa
def test_wav2vec2_with_lm(self):
ds = load_dataset("common_voice", "es", split="test", streaming=True)
sample = next(iter(ds))
resampled_audio = librosa.resample(sample["audio"]["array"], 48_000, 16_000)
model = FlaxWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
input_values = processor(resampled_audio, return_tensors="np").input_values
logits = model(input_values).logits
transcription = processor.batch_decode(np.array(logits)).text
self.assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")
@require_pyctcdecode
@require_librosa
def test_wav2vec2_with_lm_pool(self):
ds = load_dataset("common_voice", "es", split="test", streaming=True)
sample = next(iter(ds))
resampled_audio = librosa.resample(sample["audio"]["array"], 48_000, 16_000)
model = FlaxWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
input_values = processor(resampled_audio, return_tensors="np").input_values
logits = model(input_values).logits
# test user-managed pool
with multiprocessing.get_context("fork").Pool(2) as pool:
transcription = processor.batch_decode(np.array(logits), pool).text
self.assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")
# user-managed pool + num_processes should trigger a warning
with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl, multiprocessing.get_context("fork").Pool(
2
) as pool:
transcription = processor.batch_decode(np.array(logits), pool, num_processes=2).text
self.assertIn("num_process", cl.out)
self.assertIn("it will be ignored", cl.out)
self.assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")
@require_pyctcdecode
@require_librosa
def test_wav2vec2_with_lm_invalid_pool(self):
run_test_in_subprocess(test_case=self, target_func=_test_wav2vec2_with_lm_invalid_pool, inputs=None)
|