File size: 26,298 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import math
import multiprocessing
import traceback
import unittest

import numpy as np
from datasets import load_dataset

from transformers import Wav2Vec2Config, is_flax_available
from transformers.testing_utils import (
    CaptureLogger,
    is_flaky,
    is_librosa_available,
    is_pt_flax_cross_test,
    is_pyctcdecode_available,
    require_flax,
    require_librosa,
    require_pyctcdecode,
    require_soundfile,
    run_test_in_subprocess,
    slow,
)

from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, random_attention_mask


if is_flax_available():
    import jax
    import jax.numpy as jnp
    import optax
    from flax.traverse_util import flatten_dict

    from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2Processor
    from transformers.models.wav2vec2.modeling_flax_wav2vec2 import (
        FlaxWav2Vec2ForCTC,
        FlaxWav2Vec2ForPreTraining,
        FlaxWav2Vec2GumbelVectorQuantizer,
        FlaxWav2Vec2Model,
        _compute_mask_indices,
        _sample_negative_indices,
    )


if is_pyctcdecode_available():
    import pyctcdecode.decoder

    from transformers import Wav2Vec2ProcessorWithLM
    from transformers.models.wav2vec2_with_lm import processing_wav2vec2_with_lm


if is_librosa_available():
    import librosa


def _test_wav2vec2_with_lm_invalid_pool(in_queue, out_queue, timeout):
    error = None
    try:
        _ = in_queue.get(timeout=timeout)

        ds = load_dataset("common_voice", "es", split="test", streaming=True)
        sample = next(iter(ds))

        resampled_audio = librosa.resample(sample["audio"]["array"], 48_000, 16_000)

        model = FlaxWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
        processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")

        input_values = processor(resampled_audio, return_tensors="np").input_values

        logits = model(input_values).logits

        # use a spawn pool, which should trigger a warning if different than fork
        with CaptureLogger(pyctcdecode.decoder.logger) as cl, multiprocessing.get_context("spawn").Pool(1) as pool:
            transcription = processor.batch_decode(np.array(logits), pool).text

        unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out)
        unittest.TestCase().assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")

        # force batch_decode to internally create a spawn pool, which should trigger a warning if different than fork
        multiprocessing.set_start_method("spawn", force=True)
        with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl:
            transcription = processor.batch_decode(np.array(logits)).text

        unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out)
        unittest.TestCase().assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


class FlaxWav2Vec2ModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=1024,  # speech is longer
        is_training=False,
        hidden_size=24,
        feat_extract_norm="layer",
        feat_extract_dropout=0.0,
        feat_extract_activation="gelu",
        conv_dim=(32, 32, 32),
        conv_stride=(4, 4, 4),
        conv_kernel=(8, 8, 8),
        conv_bias=False,
        num_conv_pos_embeddings=16,
        num_conv_pos_embedding_groups=2,
        num_hidden_layers=4,
        num_attention_heads=2,
        hidden_dropout_prob=0.1,  # this is most likely not correctly set yet
        intermediate_size=20,
        layer_norm_eps=1e-5,
        hidden_act="gelu",
        initializer_range=0.02,
        vocab_size=32,
        do_stable_layer_norm=True,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.hidden_size = hidden_size
        self.feat_extract_norm = feat_extract_norm
        self.feat_extract_dropout = feat_extract_dropout
        self.feat_extract_activation = feat_extract_activation
        self.conv_dim = conv_dim
        self.conv_stride = conv_stride
        self.conv_kernel = conv_kernel
        self.conv_bias = conv_bias
        self.num_conv_pos_embeddings = num_conv_pos_embeddings
        self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_dropout_prob = hidden_dropout_prob
        self.intermediate_size = intermediate_size
        self.layer_norm_eps = layer_norm_eps
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.vocab_size = vocab_size
        self.do_stable_layer_norm = do_stable_layer_norm
        self.scope = scope

        output_seq_length = self.seq_length
        for kernel, stride in zip(self.conv_kernel, self.conv_stride):
            output_seq_length = (output_seq_length - (kernel - 1)) / stride
        self.output_seq_length = int(math.ceil(output_seq_length))
        self.encoder_seq_length = self.output_seq_length

    def prepare_config_and_inputs(self):
        input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0)
        attention_mask = random_attention_mask([self.batch_size, self.seq_length])

        config = Wav2Vec2Config(
            do_stable_layer_norm=self.do_stable_layer_norm,
            hidden_size=self.hidden_size,
            feat_extract_norm=self.feat_extract_norm,
            feat_extract_dropout=self.feat_extract_dropout,
            feat_extract_activation=self.feat_extract_activation,
            conv_dim=self.conv_dim,
            conv_stride=self.conv_stride,
            conv_kernel=self.conv_kernel,
            conv_bias=self.conv_bias,
            num_conv_pos_embeddings=self.num_conv_pos_embeddings,
            num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            hidden_dropout_prob=self.hidden_dropout_prob,
            intermediate_size=self.intermediate_size,
            layer_norm_eps=self.layer_norm_eps,
            hidden_act=self.hidden_act,
            initializer_range=self.initializer_range,
            vocab_size=self.vocab_size,
        )

        return config, input_values, attention_mask

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_values, attention_mask = config_and_inputs
        inputs_dict = {"input_values": input_values, "attention_mask": attention_mask}
        return config, inputs_dict


@require_flax
class FlaxWav2Vec2ModelTest(FlaxModelTesterMixin, unittest.TestCase):
    all_model_classes = (
        (FlaxWav2Vec2Model, FlaxWav2Vec2ForCTC, FlaxWav2Vec2ForPreTraining) if is_flax_available() else ()
    )

    def setUp(self):
        self.model_tester = FlaxWav2Vec2ModelTester(self)

    def test_train(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        input_values = inputs_dict["input_values"]
        attention_mask = inputs_dict["attention_mask"]

        model = FlaxWav2Vec2ForPreTraining(config)

        features_shape = (
            input_values.shape[0],
            model._get_feat_extract_output_lengths(np.array(input_values.shape[1])),
        )

        batch_size, sequence_length = features_shape[:2]

        mask_prob = 0.5
        mask_length = 4
        mask_time_indices = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)

        dropout_rng, gumbel_rng = jax.random.split(jax.random.PRNGKey(0))

        output = model(
            input_values,
            attention_mask=attention_mask,
            mask_time_indices=mask_time_indices,
            train=True,
            dropout_rng=dropout_rng,
            gumbel_rng=gumbel_rng,
        )[0]

        self.assertTrue(output.shape == (batch_size, sequence_length, model.config.proj_codevector_dim))

    # overwrite because of `input_values`
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.__call__)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["input_values", "attention_mask"]
            self.assertListEqual(arg_names[:2], expected_arg_names)

    # overwrite because of `input_values`
    def test_jit_compilation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
                model = model_class(config)

                @jax.jit
                def model_jitted(input_values, attention_mask=None, **kwargs):
                    return model(input_values=input_values, attention_mask=attention_mask, **kwargs)

                with self.subTest("JIT Enabled"):
                    jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple()

                with self.subTest("JIT Disabled"):
                    with jax.disable_jit():
                        outputs = model_jitted(**prepared_inputs_dict).to_tuple()

                self.assertEqual(len(outputs), len(jitted_outputs))
                for jitted_output, output in zip(jitted_outputs, outputs):
                    self.assertEqual(jitted_output.shape, output.shape)

    def test_freeze_feature_encoder(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        input_values = inputs_dict["input_values"]
        attention_mask = inputs_dict["attention_mask"]

        model = FlaxWav2Vec2ForPreTraining(config)
        params = model.params

        # dummy loss function
        def compute_loss(
            params, input_values, attention_mask, freeze_feature_encoder: bool = False, epsilon: float = 1e-8
        ):
            outputs = model(
                input_values,
                attention_mask=attention_mask,
                freeze_feature_encoder=freeze_feature_encoder,
                params=params,
            )
            # compute cosine similarity of projected and projected_quantized states
            cosine_sim = optax.cosine_similarity(
                outputs.projected_states, outputs.projected_quantized_states, epsilon=epsilon
            )
            loss = cosine_sim.sum()
            return loss, outputs.to_tuple()

        # transform the loss function to get the gradients
        grad_fn = jax.value_and_grad(compute_loss, has_aux=True)

        # compute loss, outputs and gradients for unfrozen model
        (loss, outputs), grads = grad_fn(params, input_values, attention_mask, freeze_feature_encoder=False)

        # compare to loss, outputs and gradients for frozen model
        (loss_frozen, outputs_frozen), grads_frozen = grad_fn(
            params, input_values, attention_mask, freeze_feature_encoder=True
        )

        # ensure that the outputs and losses remain precisely equal
        for output, output_frozen in zip(outputs, outputs_frozen):
            self.assertTrue((output == output_frozen).all())
        self.assertEqual(loss, loss_frozen)

        grads = flatten_dict(grads)
        grads_frozen = flatten_dict(grads_frozen)

        # ensure that the dicts of gradients contain the same keys
        self.assertEqual(grads.keys(), grads_frozen.keys())

        # ensure that the gradients of the feature extractor layers are precisely zero when frozen and contain non-zero entries when unfrozen
        feature_extractor_grads = tuple(grads[k] for k in grads if "feature_extractor" in k)
        feature_extractor_grads_frozen = tuple(grads_frozen[k] for k in grads_frozen if "feature_extractor" in k)

        for feature_extractor_grad, feature_extractor_grad_frozen in zip(
            feature_extractor_grads, feature_extractor_grads_frozen
        ):
            self.assertTrue((feature_extractor_grad_frozen == 0.0).all())
            self.assertTrue((feature_extractor_grad > 0.0).any())

        # ensure that the gradients of all unfrozen layers remain equal, i.e. all layers excluding the frozen 'feature_extractor'
        grads = tuple(grads[k] for k in grads if "feature_extractor" not in k)
        grads_frozen = tuple(grads_frozen[k] for k in grads_frozen if "feature_extractor" not in k)

        for grad, grad_frozen in zip(grads, grads_frozen):
            self.assertTrue((grad == grad_frozen).all())

    @slow
    def test_model_from_pretrained(self):
        for model_class_name in self.all_model_classes:
            model = model_class_name.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", from_pt=True)
            outputs = model(np.ones((1, 1024), dtype="f4"))
            self.assertIsNotNone(outputs)

    @is_pt_flax_cross_test
    @is_flaky()
    def test_equivalence_pt_to_flax(self):
        super().test_equivalence_pt_to_flax()


@require_flax
class FlaxWav2Vec2UtilsTest(unittest.TestCase):
    def test_compute_mask_indices(self):
        batch_size = 4
        sequence_length = 60
        mask_prob = 0.5
        mask_length = 1

        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)

        self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)])

    def test_compute_mask_indices_overlap(self):
        batch_size = 4
        sequence_length = 80
        mask_prob = 0.5
        mask_length = 4

        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)

        # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal
        for batch_sum in mask.sum(axis=-1):
            self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)

    def test_compute_mask_indices_attn_mask_overlap(self):
        batch_size = 4
        sequence_length = 80
        mask_prob = 0.5
        mask_length = 4

        attention_mask = np.ones((batch_size, sequence_length), dtype=np.int32)
        attention_mask[:2, sequence_length // 2 :] = 0

        mask = _compute_mask_indices(
            (batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask
        )

        for batch_sum in mask.sum(axis=-1):
            self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)

        self.assertTrue(mask[:2, sequence_length // 2 :].sum() == 0)

    def test_compute_perplexity(self):
        probs = np.arange(100).reshape(2, 5, 10) / 100

        ppl = FlaxWav2Vec2GumbelVectorQuantizer._compute_perplexity(probs)
        self.assertTrue(abs(ppl.item() - 141.4291) < 1e-3)

        # mask half of the input
        mask = np.ones((2,), dtype=bool)
        mask[0] = 0

        ppl = FlaxWav2Vec2GumbelVectorQuantizer._compute_perplexity(probs, mask)
        self.assertTrue(abs(ppl.item() - 58.6757) < 1e-3)

    def test_sample_negatives(self):
        batch_size = 2
        sequence_length = 10
        hidden_size = 4
        num_negatives = 3

        features = (np.arange(sequence_length * hidden_size) // hidden_size).reshape(
            sequence_length, hidden_size
        )  # each value in vector consits of same value
        features = np.broadcast_to(features[None, :], (batch_size, sequence_length, hidden_size))

        negative_indices = _sample_negative_indices(features.shape, num_negatives)

        features = features.reshape(-1, hidden_size)  # BTC => (BxT)C
        # take negative vectors from sampled indices
        sampled_negatives = features[negative_indices.reshape(-1)]
        negatives = sampled_negatives.reshape(batch_size, sequence_length, num_negatives, hidden_size).transpose(
            2, 0, 1, 3
        )

        self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))

        # make sure no negatively sampled vector is actually a positive one
        for negative in negatives:
            self.assertTrue(((negative - features.reshape(negative.shape)) == 0).sum() == 0.0)

        # make sure that full vectors are sampled and not values of vectors
        # => this means that `unique()` yields a single value for `hidden_size` dim
        self.assertEqual(np.unique(negatives, axis=-1).shape, (num_negatives, batch_size, sequence_length, 1))

    def test_sample_negatives_with_attn_mask(self):
        batch_size = 2
        sequence_length = 10
        hidden_size = 4
        num_negatives = 3

        features = (np.arange(sequence_length * hidden_size) // hidden_size).reshape(
            sequence_length, hidden_size
        )  # each value in vector consits of same value

        # second half of last input tensor is padded
        attention_mask = np.ones((batch_size, sequence_length), dtype=np.int8)
        attention_mask[-1, sequence_length // 2 :] = 0

        forbidden_indices = (
            np.arange(sequence_length // 2, sequence_length, dtype=np.int32) + (batch_size - 1) * sequence_length
        ).tolist()

        features = np.broadcast_to(features[None, :], (batch_size, sequence_length, hidden_size))

        negative_indices = _sample_negative_indices(features.shape, num_negatives, attention_mask=attention_mask)

        # make sure that no padding tokens are sampled
        self.assertTrue(all([idx not in negative_indices for idx in forbidden_indices]))

        features = features.reshape(-1, hidden_size)  # BTC => (BxT)C
        # take negative vectors from sampled indices
        sampled_negatives = features[negative_indices.reshape(-1)]
        negatives = sampled_negatives.reshape(batch_size, sequence_length, num_negatives, hidden_size).transpose(
            2, 0, 1, 3
        )

        self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))

        # make sure no negatively sampled vector is actually a positive one
        for negative in negatives:
            self.assertTrue(((negative - features.reshape(negative.shape)) == 0).sum() == 0.0)

        # make sure that full vectors are sampled and not just slices of vectors
        # => this means that `unique()` yields a single value for `hidden_size` dim
        self.assertEqual(np.unique(negatives, axis=-1).shape, (num_negatives, batch_size, sequence_length, 1))


@require_flax
@require_soundfile
@slow
class FlaxWav2Vec2ModelIntegrationTest(unittest.TestCase):
    def _load_datasamples(self, num_samples):
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        # automatic decoding with librispeech
        speech_samples = ds.sort("id").filter(
            lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]
        )[:num_samples]["audio"]

        return [x["array"] for x in speech_samples]

    def test_inference_ctc_robust_batched(self):
        model = FlaxWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", from_pt=True)
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", do_lower_case=True)

        input_speech = self._load_datasamples(4)

        inputs = processor(input_speech, return_tensors="np", padding=True)

        input_values = inputs.input_values
        attention_mask = inputs.attention_mask

        logits = model(input_values, attention_mask=attention_mask).logits

        predicted_ids = jnp.argmax(logits, axis=-1)
        predicted_trans = processor.batch_decode(predicted_ids)

        EXPECTED_TRANSCRIPTIONS = [
            "a man said to the universe sir i exist",
            "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore",
            "the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around"
            " him with the thousands of spectators were trivialities not worth thinking about",
            "his instant panic was followed by a small sharp blow high on his chest",
        ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)

    def test_inference_pretrained(self):
        model = FlaxWav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-large-lv60", from_pt=True)
        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
            "facebook/wav2vec2-large-lv60", return_attention_mask=True
        )
        input_speech = self._load_datasamples(2)

        inputs_dict = feature_extractor(input_speech, return_tensors="np", padding=True)

        features_shape = (
            inputs_dict["input_values"].shape[0],
            model._get_feat_extract_output_lengths(np.array(inputs_dict["input_values"].shape[1])),
        )

        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            min_masks=2,
        )

        outputs = model(
            inputs_dict.input_values,
            attention_mask=inputs_dict.attention_mask,
            mask_time_indices=mask_time_indices,
        )

        # compute cosine similarity
        cosine_sim = optax.cosine_similarity(
            outputs.projected_states, outputs.projected_quantized_states, epsilon=1e-8
        )

        # retrieve cosine sim of masked features
        cosine_sim_masked = cosine_sim[mask_time_indices]

        # ... now compare to randomly initialized model

        config = Wav2Vec2Config.from_pretrained("facebook/wav2vec2-large-lv60")
        model_rand = FlaxWav2Vec2ForPreTraining(config)

        outputs_rand = model_rand(
            inputs_dict.input_values,
            attention_mask=inputs_dict.attention_mask,
            mask_time_indices=mask_time_indices,
        )

        # compute cosine similarity
        cosine_sim_rand = optax.cosine_similarity(
            outputs_rand.projected_states, outputs_rand.projected_quantized_states
        )

        # retrieve cosine sim of masked features
        cosine_sim_masked_rand = cosine_sim_rand[mask_time_indices]

        # a pretrained wav2vec2 model has learned to predict the quantized latent states
        # => the cosine similarity between quantized states and predicted states > 0.5
        # a random wav2vec2 model has not learned to predict the quantized latent states
        # => the cosine similarity between quantized states and predicted states is very likely < 0.1
        self.assertTrue(cosine_sim_masked.mean().item() - 5 * cosine_sim_masked_rand.mean().item() > 0)

    @require_pyctcdecode
    @require_librosa
    def test_wav2vec2_with_lm(self):
        ds = load_dataset("common_voice", "es", split="test", streaming=True)
        sample = next(iter(ds))

        resampled_audio = librosa.resample(sample["audio"]["array"], 48_000, 16_000)

        model = FlaxWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
        processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")

        input_values = processor(resampled_audio, return_tensors="np").input_values

        logits = model(input_values).logits

        transcription = processor.batch_decode(np.array(logits)).text

        self.assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")

    @require_pyctcdecode
    @require_librosa
    def test_wav2vec2_with_lm_pool(self):
        ds = load_dataset("common_voice", "es", split="test", streaming=True)
        sample = next(iter(ds))

        resampled_audio = librosa.resample(sample["audio"]["array"], 48_000, 16_000)

        model = FlaxWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
        processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")

        input_values = processor(resampled_audio, return_tensors="np").input_values

        logits = model(input_values).logits

        # test user-managed pool
        with multiprocessing.get_context("fork").Pool(2) as pool:
            transcription = processor.batch_decode(np.array(logits), pool).text

        self.assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")

        # user-managed pool + num_processes should trigger a warning
        with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl, multiprocessing.get_context("fork").Pool(
            2
        ) as pool:
            transcription = processor.batch_decode(np.array(logits), pool, num_processes=2).text

        self.assertIn("num_process", cl.out)
        self.assertIn("it will be ignored", cl.out)

        self.assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")

    @require_pyctcdecode
    @require_librosa
    def test_wav2vec2_with_lm_invalid_pool(self):
        run_test_in_subprocess(test_case=self, target_func=_test_wav2vec2_with_lm_invalid_pool, inputs=None)