File size: 9,802 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import itertools
import random
import unittest

import numpy as np

from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, Wav2Vec2Config, Wav2Vec2FeatureExtractor
from transformers.testing_utils import require_torch, slow

from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin


global_rng = random.Random()


def floats_list(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = global_rng

    values = []
    for batch_idx in range(shape[0]):
        values.append([])
        for _ in range(shape[1]):
            values[-1].append(rng.random() * scale)

    return values


class Wav2Vec2FeatureExtractionTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        min_seq_length=400,
        max_seq_length=2000,
        feature_size=1,
        padding_value=0.0,
        sampling_rate=16000,
        return_attention_mask=True,
        do_normalize=True,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.min_seq_length = min_seq_length
        self.max_seq_length = max_seq_length
        self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
        self.feature_size = feature_size
        self.padding_value = padding_value
        self.sampling_rate = sampling_rate
        self.return_attention_mask = return_attention_mask
        self.do_normalize = do_normalize

    def prepare_feat_extract_dict(self):
        return {
            "feature_size": self.feature_size,
            "padding_value": self.padding_value,
            "sampling_rate": self.sampling_rate,
            "return_attention_mask": self.return_attention_mask,
            "do_normalize": self.do_normalize,
        }

    def prepare_inputs_for_common(self, equal_length=False, numpify=False):
        def _flatten(list_of_lists):
            return list(itertools.chain(*list_of_lists))

        if equal_length:
            speech_inputs = floats_list((self.batch_size, self.max_seq_length))
        else:
            # make sure that inputs increase in size
            speech_inputs = [
                _flatten(floats_list((x, self.feature_size)))
                for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
            ]

        if numpify:
            speech_inputs = [np.asarray(x) for x in speech_inputs]

        return speech_inputs


class Wav2Vec2FeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase):
    feature_extraction_class = Wav2Vec2FeatureExtractor

    def setUp(self):
        self.feat_extract_tester = Wav2Vec2FeatureExtractionTester(self)

    def _check_zero_mean_unit_variance(self, input_vector):
        self.assertTrue(np.all(np.mean(input_vector, axis=0) < 1e-3))
        self.assertTrue(np.all(np.abs(np.var(input_vector, axis=0) - 1) < 1e-3))

    def test_call(self):
        # Tests that all call wrap to encode_plus and batch_encode_plus
        feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        # create three inputs of length 800, 1000, and 1200
        speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
        np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]

        # Test not batched input
        encoded_sequences_1 = feat_extract(speech_inputs[0], return_tensors="np").input_values
        encoded_sequences_2 = feat_extract(np_speech_inputs[0], return_tensors="np").input_values
        self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))

        # Test batched
        encoded_sequences_1 = feat_extract(speech_inputs, return_tensors="np").input_values
        encoded_sequences_2 = feat_extract(np_speech_inputs, return_tensors="np").input_values
        for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
            self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))

    def test_zero_mean_unit_variance_normalization_np(self):
        feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]

        paddings = ["longest", "max_length", "do_not_pad"]
        max_lengths = [None, 1600, None]
        for max_length, padding in zip(max_lengths, paddings):
            processed = feat_extract(speech_inputs, padding=padding, max_length=max_length, return_tensors="np")
            input_values = processed.input_values

            self._check_zero_mean_unit_variance(input_values[0][:800])
            self.assertTrue(input_values[0][800:].sum() < 1e-6)
            self._check_zero_mean_unit_variance(input_values[1][:1000])
            self.assertTrue(input_values[0][1000:].sum() < 1e-6)
            self._check_zero_mean_unit_variance(input_values[2][:1200])

    def test_zero_mean_unit_variance_normalization(self):
        feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        lengths = range(800, 1400, 200)
        speech_inputs = [floats_list((1, x))[0] for x in lengths]

        paddings = ["longest", "max_length", "do_not_pad"]
        max_lengths = [None, 1600, None]

        for max_length, padding in zip(max_lengths, paddings):
            processed = feat_extract(speech_inputs, max_length=max_length, padding=padding)
            input_values = processed.input_values

            self._check_zero_mean_unit_variance(input_values[0][:800])
            self._check_zero_mean_unit_variance(input_values[1][:1000])
            self._check_zero_mean_unit_variance(input_values[2][:1200])

    def test_zero_mean_unit_variance_normalization_trunc_np_max_length(self):
        feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
        processed = feat_extract(
            speech_inputs, truncation=True, max_length=1000, padding="max_length", return_tensors="np"
        )
        input_values = processed.input_values

        self._check_zero_mean_unit_variance(input_values[0, :800])
        self._check_zero_mean_unit_variance(input_values[1])
        self._check_zero_mean_unit_variance(input_values[2])

    def test_zero_mean_unit_variance_normalization_trunc_np_longest(self):
        feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
        processed = feat_extract(
            speech_inputs, truncation=True, max_length=1000, padding="longest", return_tensors="np"
        )
        input_values = processed.input_values

        self._check_zero_mean_unit_variance(input_values[0, :800])
        self._check_zero_mean_unit_variance(input_values[1, :1000])
        self._check_zero_mean_unit_variance(input_values[2])

        # make sure that if max_length < longest -> then pad to max_length
        self.assertTrue(input_values.shape == (3, 1000))

        speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
        processed = feat_extract(
            speech_inputs, truncation=True, max_length=2000, padding="longest", return_tensors="np"
        )
        input_values = processed.input_values

        self._check_zero_mean_unit_variance(input_values[0, :800])
        self._check_zero_mean_unit_variance(input_values[1, :1000])
        self._check_zero_mean_unit_variance(input_values[2])

        # make sure that if max_length > longest -> then pad to longest
        self.assertTrue(input_values.shape == (3, 1200))

    @require_torch
    def test_double_precision_pad(self):
        import torch

        feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
        np_speech_inputs = np.random.rand(100).astype(np.float64)
        py_speech_inputs = np_speech_inputs.tolist()

        for inputs in [py_speech_inputs, np_speech_inputs]:
            np_processed = feature_extractor.pad([{"input_values": inputs}], return_tensors="np")
            self.assertTrue(np_processed.input_values.dtype == np.float32)
            pt_processed = feature_extractor.pad([{"input_values": inputs}], return_tensors="pt")
            self.assertTrue(pt_processed.input_values.dtype == torch.float32)

    @slow
    @require_torch
    def test_pretrained_checkpoints_are_set_correctly(self):
        # this test makes sure that models that are using
        # group norm don't have their feature extractor return the
        # attention_mask
        for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST:
            config = Wav2Vec2Config.from_pretrained(model_id)
            feat_extract = Wav2Vec2FeatureExtractor.from_pretrained(model_id)

            # only "layer" feature extraction norm should make use of
            # attention_mask
            self.assertEqual(feat_extract.return_attention_mask, config.feat_extract_norm == "layer")