Spaces:
Runtime error
Runtime error
File size: 12,074 Bytes
455a40f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch UperNet framework. """
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UperNetModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=32,
num_channels=3,
num_stages=4,
hidden_sizes=[10, 20, 30, 40],
depths=[2, 2, 3, 2],
is_training=True,
use_labels=True,
intermediate_size=37,
hidden_act="gelu",
type_sequence_label_size=10,
initializer_range=0.02,
out_features=["stage2", "stage3", "stage4"],
num_labels=3,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.num_channels = num_channels
self.num_stages = num_stages
self.hidden_sizes = hidden_sizes
self.depths = depths
self.is_training = is_training
self.use_labels = use_labels
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.out_features = out_features
self.num_labels = num_labels
self.scope = scope
self.num_hidden_layers = num_stages
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
config = self.get_config()
return config, pixel_values, labels
def get_backbone_config(self):
return ConvNextConfig(
num_channels=self.num_channels,
num_stages=self.num_stages,
hidden_sizes=self.hidden_sizes,
depths=self.depths,
is_training=self.is_training,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
out_features=self.out_features,
)
def get_config(self):
return UperNetConfig(
backbone_config=self.get_backbone_config(),
hidden_size=512,
pool_scales=[1, 2, 3, 6],
use_auxiliary_head=True,
auxiliary_loss_weight=0.4,
auxiliary_in_channels=40,
auxiliary_channels=256,
auxiliary_num_convs=1,
auxiliary_concat_input=False,
loss_ignore_index=255,
num_labels=self.num_labels,
)
def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels):
model = UperNetForSemanticSegmentation(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
pixel_values,
labels,
) = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class UperNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as UperNet does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
pipeline_model_mapping = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {}
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
test_torchscript = False
has_attentions = False
def setUp(self):
self.model_tester = UperNetModelTester(self)
self.config_tester = ConfigTester(self, config_class=UperNetConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def create_and_test_config_common_properties(self):
return
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_for_semantic_segmentation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs)
@unittest.skip(reason="UperNet does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="UperNet does not support input and output embeddings")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="UperNet does not have a base model")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="UperNet does not have a base model")
def test_save_load_fast_init_to_base(self):
pass
@require_torch_multi_gpu
@unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`")
def test_multi_gpu_data_parallel_forward(self):
pass
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_stages = self.model_tester.num_stages
self.assertEqual(len(hidden_states), expected_num_stages + 1)
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[self.model_tester.image_size // 4, self.model_tester.image_size // 4],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
configs_no_init.backbone_config = _config_zero_init(configs_no_init.backbone_config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
@unittest.skip(reason="UperNet does not have tied weights")
def test_tied_model_weights_key_ignore(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = UperNetForSemanticSegmentation.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of ADE20k
def prepare_img():
filepath = hf_hub_download(
repo_id="hf-internal-testing/fixtures_ade20k", repo_type="dataset", filename="ADE_val_00000001.jpg"
)
image = Image.open(filepath).convert("RGB")
return image
@require_torch
@require_vision
@slow
class UperNetModelIntegrationTest(unittest.TestCase):
def test_inference_swin_backbone(self):
processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny")
model = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny").to(torch_device)
image = prepare_img()
inputs = processor(images=image, return_tensors="pt").to(torch_device)
with torch.no_grad():
outputs = model(**inputs)
expected_shape = torch.Size((1, model.config.num_labels, 512, 512))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor(
[[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], expected_slice, atol=1e-4))
def test_inference_convnext_backbone(self):
processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny")
model = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny").to(torch_device)
image = prepare_img()
inputs = processor(images=image, return_tensors="pt").to(torch_device)
with torch.no_grad():
outputs = model(**inputs)
expected_shape = torch.Size((1, model.config.num_labels, 512, 512))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], expected_slice, atol=1e-4))
|